首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Metallographical and differential thermoanalytical (DTA) investigatitons indicate that the well known phosphide Co2P (Pearson code oP12, space group Pnma, Co2Si type) is not stable up to the melting point, T = 1659 K; it is therefore designated as the low‐temperature phase α‐Co2P. In the temperature range from 1428 to 1659 K, another, high‐temperature phase, designated as β‐Co2P, exists. X‐ray powder diffraction investigation of liquid quenched alloys in the composition range xP = 0.25 to 0.335, with xP as the mole fraction, show that the high‐temperature phase β‐Co2P is isotypic with Fe2P (hP9, P 6 2m). For the ideal composition Co2P, the unit cell parameters are: a = 5.742(2) Å, c = 3.457(5) Å, c/a = 0.621. Among the binary transition metal‐containing phosphides and arsenides isotypic with Fe2P, β‐Co2P is the only known high‐temperature phase and it shows (i) the highest axial ratio c/a and (ii) the “smallest” distortion of the hcp substructure formed by the transition metals atoms in the Fe2P structure type.  相似文献   

2.
A series of transition metal phosphides, including MoP, WP, CoP, Co2P, and Ni2P, were synthesized from their oxidic precursors by means of hydrogen plasma reduction under mild conditions. The effects of reduction conditions, such as metal to phosphorus molar ratio, power input, and reduction time, on the synthesis of metal phosphides were investigated. The products were identified by means of XRD characterization. It is indicated that metal phosphides were readily synthesized stoichiometrically from their oxides in hydrogen plasma under mild conditions.  相似文献   

3.
Structural phase-controlled formation of binary Co(2)P and CoP nanocrystals is achieved by reacting cobalt(II) oleate with trioctylphosphine. In the absence of oleylamine, Co(2)P nanowires are formed at both 290 and 320 °C. In the presence of oleylamine, Co(2)P nanorods are formed at 290 °C, and CoP nanorods are formed at 320 °C. With the simultaneous reaction of iron(III) oleate and cobalt(II) oleate with trioctylphosphine in the presence of oleylamine, ternary Co(2)P-type cobalt-iron phosphide nanostructures are produced at both 290 and 320 °C, corresponding to rice-shaped Co(1.5)Fe(0.5)P nanorods and split Co(1.7)Fe(0.3)P nanostructures, respectively. The controlled incorporation of iron into cobalt phosphide can alter the magnetic properties from paramagnetic binary Co(2)P to ferromagnetic Co(2)P-type ternary cobalt-iron phosphide nanostructures. Meanwhile, the time-dependent morphological evolution from small nanodots/nanorods, through seeded growth to unique split nanostructures is demonstrated in one-pot reaction at 320 °C.  相似文献   

4.
Controlled synthesis of transition‐metal hydroxides and oxides with earth‐abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition‐metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion‐containing aqueous solution undergoes photo‐induced reactions and produces hollow metal‐oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core–shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)2](NO3)0.2?H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo‐induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon‐induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.  相似文献   

5.
To rationally design efficient and cost‐effective electrocatalysts, a simple but efficient strategy has been developed to directly anchor prussian blue analogue (PBA) nanocubes on cobalt hydroxide nanoplates (PBA@Co(OH)2) via the in‐situ interfacial precipitation process. Subsequently, the thermal treatment in the presence of sodium hydrogen phosphite enabled the successful transition into metal phosphides with the hierarchical cube‐on‐plate structure. When used as electrocatalytsts, the obtained bimetal phosphides exhibited good bifunctional electrocatalytic activities for hydrogen and oxygen evolution reactions with good long‐term stability. Thus, an enhanced performance for overall water splitting can be achieved, which could be ascribed to the hierarchical structure and favorable composition of as‐prepared bimetal phosphide for rapid electron and mass transfer. The present study demonstrates a favorable approach to modulate the composition and structure of metal phosphide for enhancing the electrocatalytic ability toward water splitting.  相似文献   

6.
Although electrocatalysts based on transition metal phosphides (TMPs) with cationic/anionic doping have been widely studied for hydrogen evolution reaction (HER), the origin of performance enhancement still remains elusive mainly due to the random dispersion of dopants. Herein, we report a controllable partial phosphorization strategy to generate CoP species within the Co‐based metal‐organic framework (Co‐MOF). Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co‐MOF through N‐P/N‐Co bonds could lead to the optimized adsorption energy of H2O (ΔG ) and hydrogen (ΔGH*), which, together with the unique porous structure of Co‐MOF, contributes to the remarkable HER performance with an overpotential of 49 mV at a current density of 10 mA cm?2 in 1 m phosphate buffer solution (PBS, pH 7.0). The excellent catalytic performance exceeds almost all the documented TMP‐based and non‐noble‐metal‐based electrocatalysts. In addition, the CoP/Co‐MOF hybrid also displays Pt‐like performance in 0.5 m H2SO4 and 1 m KOH, with the overpotentials of 27 and 34 mV, respectively, at a current density of 10 mA cm?2.  相似文献   

7.
Transition‐metal phosphides (TMPs) have emerged as a fascinating class of narrow‐gap semiconductors and electrocatalysts. However, they are intrinsic nonlayered materials that cannot be delaminated into two‐dimensional (2D) sheets. Here, we demonstrate a general bottom‐up topochemical strategy to synthesize a series of 2D TMPs (e.g. Co2P, Ni12P5, and CoxFe2?xP) by using phosphorene sheets as the phosphorus precursors and 2D templates. Notably, 2D Co2P is a p‐type semiconductor, with a hole mobility of 20.8 cm2 V?1 s?1 at 300 K in field‐effect transistors. It also behaves as a promising electrocatalyst for the oxygen evolution reaction (OER), thanks to the charge‐transport modulation and improved surface exposure. In particular, iron‐doped Co2P (i.e. Co1.5Fe0.5P) delivers a low overpotential of only 278 mV at a current density of 10 mA cm?2 that outperforms the commercial Ir/C benchmark (304 mV).  相似文献   

8.
Even though transition‐metal phosphides (TMPs) have been developed as promising alternatives to Pt catalyst for the hydrogen evolution reaction (HER), further improvement of their performance requires fine regulation of the TMP sites related to their specific electronic structure. Herein, for the first time, boron (B)‐modulated electrocatalytic characteristics in CoP anchored on the carbon nanotubes (B‐CoP/CNT) with impressive HER activities over a wide pH range are reported. The HER performance surpasses commercial Pt/C in both neutral and alkaline media at large current density (>100 mA cm?2). A combined experimental and theoretical study identified that the B dopant could reform the local electronic configuration and atomic arrangement of bonded Co and adjacent P atoms, enhance the electrons’ delocalization capacity of Co atoms for high electrical conductivity, and optimize the free energy of H adsorption and H2 desorption on the active sites for better HER kinetics.  相似文献   

9.
The development of a general strategy for synthesizing hierarchical porous transition‐metal oxide and chalcogenide mesoporous nanotubes, is still highly challenging. Herein we present a facile self‐template strategy to synthesize Co3O4 mesoporous nanotubes with outstanding performances in both the electrocatalytic oxygen‐evolution reaction (OER) and Li‐ion battery via the thermal‐oxidation‐induced transformation of cheap and easily‐prepared Co‐Asp(cobalt–aspartic acid) nanowires. The initially formed thin layers on the precursor surfaces, oxygen‐induced outward diffusion of interior precursors, the gas release of organic oxidation, and subsequent Kirkendall effect are important for the appearance of the mesoporous nanotubes. This self‐template strategy of low‐cost precursors is found to be a versatile method to prepare other functional mesoporous nanotubes of transition‐metal oxides and chalcogenides, such as NiO, NiCo2O4, Mn5O8, CoS2 and CoSe2.  相似文献   

10.
Transition‐metal phosphides (TMPs) have emerged as promising catalyst candidates for the hydrogen evolution reaction (HER). Although numerous methods have been investigated to obtain TMPs, most rely on traditional synthetic methods that produce materials that are inherently deficient with respect to electrical conductivity. An electrospinning‐based reduction approach is presented, which generates nickel phosphide nanoparticles in N‐doped porous carbon nanofibers (Ni2P@NPCNFs) in situ. Ni2P nanoparticles are protected from irreversible fusion and aggregation in subsequent high‐temperature pyrolysis. The resistivity of Ni2P@NPCNFs (5.34 Ω cm) is greatly decreased by 104 times compared to Ni2P (>104 Ω cm) because N‐doped carbon NFs are incorporated. As an electrocatalyst for HER, Ni2P@NPCNFs reveal remarkable performance compared to other previously reported catalysts in acidic media. Additionally, it offers excellent catalytic ability and durability in both neutral and basic media. Encouraged by the excellent electrocatalytic performance of Ni2P@NPCNFs, a series of pea‐like MxP@NPCNFs, including Fe2P@NPCNFs, Co2P@NPCNFs, and Cu3P@NPCNFs, were synthesized by the same method. Detailed characterization suggests that the newly developed method could render combinations of ultrafine metal phosphides with porous carbon accessible; thereby, extending opportunities in electrocatalytic applications.  相似文献   

11.
《Journal of Energy Chemistry》2017,26(6):1147-1152
Glucose-derived carbon sphere supported cobalt phosphide nanoparticles(Co P/C) were synthesized via a concise two-step method. The electrochemical measurement results indicate that the Co P/C prepared at 900 ℃ presents excellent electrocatalytic performance for hydrogen evolution reaction(HER). The overpotential at a current density of 10 m A cm~(-2) is 108 and 163 mV in 0.5 M H_2SO_4 and 1 M KOH, respectively, and maintains its electrocatalytic durability for at least 10 h. This work supplies a new field to challenge the construction of electrocatalysts for HER through using cost-effective carbon supported transition metal phosphides.  相似文献   

12.
Hollow nanostructures have attracted increasing research interest in electrochemical energy storage and conversion owing to their unique structural features. However, the synthesis of hollow nanostructured metal phosphides, especially nonspherical hollow nanostructures, is rarely reported. Herein, we develop a metal–organic framework (MOF)‐based strategy to synthesize carbon incorporated Ni–Co mixed metal phosphide nanoboxes (denoted as NiCoP/C). The oxygen evolution reaction (OER) is selected as a demonstration to investigate the electrochemical performance of the NiCoP/C nanoboxes. For comparison, Ni–Co layered double hydroxide (Ni–Co LDH) and Ni–Co mixed metal phosphide (denoted as NiCoP) nanoboxes have also been synthesized. Benefiting from their structural and compositional merits, the as‐synthesized NiCoP/C nanoboxes exhibit excellent electrocatalytic activity and long‐term stability for OER.  相似文献   

13.
Mesoporous cobalt phosphide (meso‐CoP) was prepared by the phosphorization of ordered mesoporous cobalt oxide (meso‐Co3O4). The electrical conductivity of meso‐CoP is 37 times higher than that of nonporous CoP, and it displays semimetallic behavior with a negligibly small activation energy of 26 meV at temperatures below 296 K. Above this temperature, only materials with mesopores underwent a change in conductivity from semimetallic to semiconducting behavior. These properties were attributed to the coexistence of nanocrystalline Co2P phases. The poor crystallinity of mesoporous materials has often been considered to be a problem but this example clearly shows its positive aspects. The concept introduced here should thus lead to new routes for the synthesis of materials with high electronic conductivity.  相似文献   

14.
One‐dimensional (1D) transition metal oxide (TMO) nanostructures are actively pursued in spintronic devices owing to their nontrivial d electron magnetism and confined electron transport pathways. However, for TMOs, the realization of 1D structures with long‐range magnetic order to achieve a sensitive magnetoelectric response near room temperature has been a longstanding challenge. Herein, we exploit a chemical hydric effect to regulate the spin structure of 1D V–V atomic chains in monoclinic VO2 nanowires. Hydrogen treatment introduced V3+ (3d2) ions into the 1D zigzag V–V chains, triggering the formation of ferromagnetically coupled V3+–V4+ dimers to produce 1D superparamagnetic chains and achieve large room‐temperature negative magnetoresistance (?23.9 %, 300 K, 0.5 T). This approach offers new opportunities to regulate the spin structure of 1D nanostructures to control the intrinsic magnetoelectric properties of spintronic materials.  相似文献   

15.
The development of synthesis methods to access advanced materials, such as magnetic materials that combine multimetallic phosphide phases, remains a worthy research challenge. The most widely used strategies for the synthesis of magnetic transition metal phosphides (TMPs) are organometallic approaches. In this study, Fe-containing homometallic dendrimers and Fe/Co-containing heterometallic dendrimers were used to synthesize magnetic materials containing multimetallic phosphide phases. The crystalline nature of the nearly aggregated particles was indicated for both designed magnetic samples. In contrast to heterometallic samples, homometallic samples showed dendritic effects on their magnetic properties. Specifically, saturation magnetization (Ms) and coercivity (Hc) decrease as dendritic generation increases. Incorporating cobalt into the homometallic dendrimers to prepare the heterometallic dendrimers markedly increases the magnetic properties of the magnetic materials from 60 to 75 emu/g. Ferromagnetism in homometallic and heterometallic particles shows different responses to temperature changes. For example, heterometallic samples were less sensitive to temperature changes due to the presence of Co2P in contrast to the homometallic ones, which show an abrupt change in their slopes at a temperature close to 209 K, which appears to be related to the Fe2P ratios. This study presents dendrimers as a new type of precursor for the assembly of magnetic materials containing a mixture of iron- and cobalt-phosphides phases with tunable magnetism, and provides an opportunity to understand magnetism in such materials.  相似文献   

16.
Co‐crystallization of a cyanide‐bridged tetranuclear complex [Co2Fe2] with 4‐cyanophenol (CP) gave a hydrogen bonding donor–acceptor system, [Co2Fe2(bpy*)4(CN)6(tp*)2](PF6)2⋅2 CP⋅8 BN ( 1 ). 1 exhibited a three‐step phase transition between HT, IM1, IM2, and LT phases upon temperature variation. Variable temperature magnetic measurements and structural analyses revealed that the three‐step spin transition is caused by electron‐transfer‐coupled spin transitions (ETCSTs) accompanied with alteration of the hydrogen bonding interactions.  相似文献   

17.
A facile approach to bimetallic phosphides, Co‐Fe‐P, by a high‐temperature (300 °C) reaction between Co‐Fe‐O nanoparticles and trioctylphosphine is presented. The growth of Co‐Fe‐P from the Co‐Fe‐O is anisotropic. As a result, Co‐Fe‐P nanorods (from the polyhedral Co‐Fe‐O nanoparticles) and sea‐urchin‐like Co‐Fe‐P (from the cubic Co‐Fe‐O nanoparticles) are synthesized with both the nanorod and the sea‐urchin‐arm dimensions controlled by Co/Fe ratios. The Co‐Fe‐P structure, especially the sea‐urchin‐like (Co0.54Fe0.46)2P, shows enhanced catalysis for the oxygen evolution reaction in KOH with its catalytic efficiency surpassing the commercial Ir catalyst. Our synthesis is simple and may be readily extended to the preparation of other multimetallic phosphides for important catalysis and energy storage applications.  相似文献   

18.
Pseudocontact shifts (PCS) generated by paramagnetic metal ions present valuable long‐range information in the study of protein structural biology by nuclear magnetic resonance (NMR) spectroscopy. Faithful interpretation of PCSs, however, requires complete immobilization of the metal ion relative to the protein, which is difficult to achieve with synthetic metal tags. We show that two histidine residues in sequential turns of an α‐helix provide a binding site for a Co2+ ion, which positions the metal ion in a uniquely well‐defined and predictable location. Exchange between the bound and free cobalt is slow on the timescale defined by chemical shifts, but the NMR resonance assignments are nonetheless readily transferred from the diamagnetic to the paramagnetic NMR spectrum by an IzSz‐exchange experiment. The double‐histidine‐Co2+ motif offers a straightforward, inexpensive, and convenient way of generating precision PCSs in proteins.  相似文献   

19.
《中国化学快报》2022,33(8):3752-3756
Hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) have been considered as two critical processes in the field of electrocatalytic water-splitting for hydrogen production and fuel cells. However, the sluggish reaction kinetics of HER and ORR required efficient electrocatalyst such as Pt to promote such process. Transition metal phosphides (TMPs) exhibit great potential to replace noble metal electrocatalysts to accelerate HER and ORR due to their high activity and easy availability. Herein, a highly-efficient bifunctional CoP electrocatalyst for HER and ORR, featuring a unique core-shell structure decorated on nitrogen-doped carbon matrix was designed and constructed via etching a cobalt-based zeolitic imidazolate framework (ZIF-67) with phytic acid (PA) followed by pyrolysis treatment (PA-ZIF-67–900). Experimental results revealed that the pure-phase single-crystalline CoP exhibited outstanding electrocatalytic performance in HER and ORR, superior to Co(PO3)2 in PA-ZIF-67–700, hybrid phase of Co(PO3)2 and CoP in PA-ZIF-67–800 and Co2P-doped CoP in PA-ZIF-67–1000. To reach the current density of 10 mA/cm2 the as-synthesized CoP required an overpotential of 120 mV for HER in 1 mol/L KOH and half-wave potential of 0.85 V in O2-saturated 0.1 mol/L KOH. This work present new clue for construction of efficient and bifunctional electrocatalyst in the field of energy conversion and storage  相似文献   

20.
In situ evolution of electrocatalysts is of paramount importance in defining catalytic reactions. Catalysts for aprotic electrochemistry such as lithium–sulfur (Li‐S) batteries are the cornerstone to enhance intrinsically sluggish reaction kinetics but the true active phases are often controversial. Herein, we reveal the electrochemical phase evolution of metal‐based pre‐catalysts (Co4N) in working Li‐S batteries that renders highly active electrocatalysts (CoSx). Electrochemical cycling induces the transformation from single‐crystalline Co4N to polycrystalline CoSx that are rich in active sites. This transformation propels all‐phase polysulfide‐involving reactions. Consequently, Co4N enables stable operation of high‐rate (10 C, 16.7 mA cm?2) and electrolyte‐starved (4.7 μL mgS?1) Li‐S batteries. The general concept of electrochemically induced sulfurization is verified by thermodynamic energetics for most of low‐valence metal compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号