首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mobile phase additives can significantly affect the separation of cationic drugs in reversed-phase liquid chromatography (RPLC). Although there are many applications for anionic additives in RPLC separations, the retention mechanism of basic drugs in the presence of inorganic and highly hydrophilic anionic species in the mobile phase is not at all well understood. Two major retention mechanisms by which anionic additives can influence the retention of cations are: (1) ion pair formation in the mobile phase with subsequent retention of the neutral ion pair; (2) pre-sorption of anionic additives on the stationary phase followed by "dynamic ion-exchange" or "electrostatic interaction" with the analytes. Because the use of ion pair chromatography in the separation of proteins, peptides, and basic drugs is rapidly increasing, understanding the retention mechanism involved is becoming more important, especially for the smaller commonly used hydrophilic anionic additives (e.g., formate HCOO, chloride Cl-, trifluoroacetate CF3COO-, perchlorate ClO4-, and hexafluorophosphate PF6-). In this work, we compared various anionic additives in light of their effects on the retention of basic drugs. As did many others we found that the addition of anionic additives (Cl-, CF3COO-, ClO4-, PF6-) profoundly influences the retention of basic drugs. In order to explain the data and differentiate the mechanisms by which the anionic additives perturb the chromatography, we used ion pair formation constants independently measured by capillary electrophoresis (CE) under the mobile phase conditions (pH, solvent composition) identical to those used in chromatography. Agreement between the predicted and experimental chromatographic data under various conditions was evaluated. Under specific circumstances (e.g., pH, stationary phase, and nature of anionic additive), we conclude that the ion pair mechanism is more important than the dynamic ion-exchange and at other conditions it remains a significant contribution.  相似文献   

2.
Due to their beneficial effect on selectivity, peak shape, and sample loading, the use of mobile phase anionic additives, such as formate (HCOO-), chloride (Cl-), and trifluoroacetate (CF3COO-), is increasing in both reversed-phase chromatography (RPLC) and liquid chromatography-mass spectrometry (LC/MS). Similarly, perchlorate is a common "ion pair" agent in reversed-phase separation of peptides. Although many studies have suggested that anions effect in chromatography is due to the formation of ion pairs in the mobile phase between the anions and cationic analytes, there has been no independent verification that ion pairs are, in fact, responsible for these observations. In order to understand the mechanisms by which anionic additives influence retention in chromatography and ionization efficiency in electrospray mass spectrometry, we studied the formation of ion pairs between a number of prototypical basic drugs and various additives by measuring the effect of anionic additives on the electrophoretic mobility of the probe drugs under solvent conditions commonly used in chromatography. For the first time, ion pair formation between basic drugs and anionic additives under conditions commonly used in reversed-phase liquid chromatography has been confirmed independently with all anions (i.e. hexafluorophosphate, perchlorate, trifluoroacetate, and chloride) used in this study. We measured ion pair formation constants (Kip) for different anionic additives using capillary electrophoresis (CE) and obtained quantitative estimates for the extent of ion pairing in buffered acetonitrile-water. The data clearly indicate that different anionic additives ion pair with cationic drugs to quite different extents. The ion pair formation constants show a clear trend with the order being: PF6- > ClO4- > CF3COO- > Cl-. However, the extent of ion pairing is not large. At a typical RPLC mobile phase additive concentration of 20mM, the percentages of the analytes that are present as ion pairs are about 15%, 6%, and 3% for hexafluorophosphate, perchlorate, and trifluoroacetate, respectively. The fraction of the analytes present as a chloride pair is even smaller.  相似文献   

3.
Several mobile phase additives (i.e., organic acids and their ammonium salts) were used to modulate the chromatographic retention of cyanocobalamin and its cis‐diaminemonochloroplatinum(II) conjugate, depending on the specific nature of the stationary phase. Regardless of the mobile phase additive, the positively charged cyanocobalamin‐cis‐diaminemonochloroplatinum(II) conjugate was systematically less retained than cyanocobalamin on a conventional octadecyl‐silica column. In contrast, the amide‐embedded C18 column exhibited a progressive increase in the conjugate retention time upon changing the mobile phase additive from organic (acetic, formic and trifluoroacetic) acids to ammonium salts, ultimately leading to an inversion of the elution order. This change of retention was interpreted by invoking the interplay between hydrophobic interactions, hydrogen bonding between the conjugate and the polar amide groups and the ion‐pairing ability of the lyophilic counterions, whereby the acetate anion was found to be the most suitable to control the solute retention.  相似文献   

4.
Sodium hexafluorophosphate, perchlorate and tetrafluoroborate were applied as the ion‐pair reagents in reversed‐phase chromatography of several imidazolium‐based ionic liquids. The optimization of the retention was performed by changing the kind of organic modifier (methanol, acetonitrile), concentration and the kind of the ion‐pair reagents in the mobile phase and the column kind (Zorbax SB‐C18, Zorbax SB‐Phenyl, Zorbax SB‐CN, Zorbax SB‐NH2 and Supelcosil LC‐F). The selectivity of the proposed chromatographic systems according to the cation kind was compared on the basis of the resolution of ionic liquid mixture. The perturbation method was applied to identify the anion kind. The formation of ion‐associated complexes between promethazine as counter‐cation and chaotropic anions controlling their retention was confirmed.  相似文献   

5.
In recent years, metal oxides such as titania have been commercially available as chromatographic beds that can potentially be used to achieve novel separations of polar compounds. For example β blockers, which are more often encountered in environmental sciences, have a wide range of polarity, and their basic character leads to difficult sample treatment and separation on conventional silica‐based sorbents. The contribution of titania to the selective analysis of nine β blockers was evaluated in terms of retention mechanisms observed in hydrophilic interaction LC using acetonitrile/water mobile phases with various additives. The mobile phase additives enabled to control the β blocker charge as well as the titania surface charge. Depending on their respective ionic state, various retention mechanisms were identified at low water contents (<40%), including mainly adsorption mixed with hydrophilic interaction LC partition, ion exchange and ion exclusion. An unexpected retention was also observed for high water content and high pH, changing the selectivity of the support.  相似文献   

6.
T. Takeuchi  T. Miwa 《Chromatographia》1996,43(3-4):143-148
Summary The retention behavior of dansyl amino acids in micellar liquid chromatography has been examined by using ionexchange-induced stationary phases. Several parameters affected the retention of the analytes, including the type and concentration of micellar agent and modifier ion and the concentration of acetonitrile in the mobile phase. The order of elution of dansyl amino acids obtained with the micellar mobile phase was very different from that observed in conventional reversed-phase liquid chromatography. Fluorescence intensities of some dansyl amino acids were enhanced by the micellar mobile phase.  相似文献   

7.
Abstract

This paper will summarize several new findings obtained in our laboratory on the use of micellar mobile phases in liquid chromatography. The topics to be addressed include (i) stationary phase modification by the mobile phase surfactant in micellar liquid chromatography, (ii) investigation of the retention mechanism in micellar liquid chromatography (MLC) using an alkyl-benzene homologous series, (iii) evaluation of the effects of organic additives upon retention and efficiency in MLC, and (iv) preliminary characterization of several new classes of surfactant molecules for use in MLC. The information gained from these studies provides new insights into the dynamics of MLC and demonstrates their potential usefulness in several new separation applications including the resolution of optical isomers.  相似文献   

8.
Fluorescence intensity of various chemical species is enhanced in the microenvironment provided by micelles. Parameters which affect fluorescence intensities are examined by using dansyl (Dns) amino acids as the probe. The retention behavior of Dns-amino acids in micellar LC is examined by using ion-exchange-induced stationary phases. The type and concentration of micellar agent and modifier ion as well as concentration of acetonitrile in the mobile phase affect the retention and signal intensity of Dns-amino acids. The order of elution of Dns-amino acids obtained with the micellar mobile phase is very different from that observed in conventional reversed-phase LC. Fluorescence intensities of Dns-amino acids are enhanced by the micellar mobile phase.  相似文献   

9.
The simultaneous isocratic separation of a mixture of five phenolic acids and four flavonoids (two important groups of natural polyphenolic compounds with very different polarities) was investigated in three different RPLC modes using a hydro‐organic mobile phase, and mobile phases containing SDS at concentrations below and above the critical micellar concentration (submicellar LC and micellar LC (MLC), respectively). In the hydro‐organic mode, methanol and acetonitrile; in the submicellar mode methanol; and in the micellar mode, methanol and 1‐propanol were examined individually as organic modifiers. Regarding the other modes, MLC provided more appropriate resolutions and analysis time and was preferred for the separation of the selected compounds. Optimization of separation in MLC was performed using an interpretative approach for each alcohol. In this way, the retention of phenolic acids and flavonoids were modeled using the retention factors obtained from five different mobile phases, then the Pareto optimality method was applied to find the best compatibility between analysis time and quality of separation. The results of this study showed some promising advantages of MLC for the simultaneous separation of phenolic acids and flavonoids, including low consumption of organic solvent, good resolution, short analysis time, and no requirement of gradient elution.  相似文献   

10.
High-performance chelation ion chromatography (HPCIC) was employed to retain cationic Cr(III) on an anion-exchange column and hence allow the separation of the two most prevalent forms of chromium, Cr(II) and Cr(VI). A mobile phase of nitric acid was utilized at pH = 1.5; additionally, 2,6-pyridinedicarboxylic acid was used at a concentration of 6 mM. Additives with different structural characteristics were used in an effort to elucidate retention mechanisms. Inductively-coupled plasma mass spectrometry was used for chromium detection. A collision cell was utilized to reduce chloride-based polyatomic ions that may interfere with the detection of Cr(III), and a detection limit study yielded levels in the low part-per-billion range. The newly developed method was applied to the chromatographic analysis of samples of an incubation medium containing Cr(VI) incubated with cell nuclei.  相似文献   

11.
Aqueous solutions of bile salts, i.e. sodium cholate (NaC), sodium deoxycholate (NaDC), and sodium taurocholate (NaTC), are characterized and evaluated as reversed-phase liquid chromatographic (RPLC) mobile phases. The separation of the ASTM-recommended RPLC test mix in addition to more than 50 other compounds on a C18 column demonstrates the viability of these bile salts as HPLC mobile phases. The Armstrong-Nome theory was applied and found to adequately describe the partitioning behavior of solutes eluted with these bile salts at low surfactant concentrations. The effect of alcohol additives on chromatographic retention and efficiency was also assessed. Not only are the bile salt molecules rigid and chiral, but they form helical micellar aggregates as well. Consequently, many isomeric compounds can be easily resolved with this mobile phase additive. The base-line resolution of some binaphthyl-type enantiomers with a standard C18 column and the bile salt micellar mobile phases is also demonstrated. In addition, these bile salt mobile phases may be preferable to conventional hydroorganic mobile phase systems for the separation of many classes of routine compounds. A brief prospectus on the future utilization of bile salts in liquid chromatography is presented.  相似文献   

12.
Retention of a model set of sulfonylurea compounds has been studied under RP‐LC conditions, considering competitional effects brought by different alcohols (ethanol, 1‐propanol, 2‐propanol, 1‐butanol, 1‐pentanol, and 1‐octanol) used as additives in the organic component of the mobile phase (methanol). The capacity factors determined for the model compounds decreased with the increase of the hydrophobic character of the organic additive in the mobile phase. The amount of the additive within the organic component of the mobile phase was kept constant (1% as volumetric ratio). Retention was studied at different mobile phase compositions (aqueous to organic component ratios). Different functional fitting models were used to correlate retention to the content of the organic component in the mobile phase. Extrapolation of retention expressed as capacity factor to a mobile phase composition free of organic component is well correlated to the hydrophobic characteristics of the organic additives. The adsorption model was used for tuning the experimental find‐outs. The possibility of controlling retention through the competitive effects induced by hydrophobic additives in the mobile phase is highlighted.  相似文献   

13.
The composition of the mobile phase employed in capillary zone electrophoresis and the related technique, micellar electrokinetic capillary chromatography, is an important factor in determining separation performance. The influences of ionic salt, surfactant, and organic solvent mobile phase additives on separation efficiency, retention, and elution range are discussed and demonstrated.  相似文献   

14.
Abstract

Alkyl-modified silica (RSi) and polystyrenedivinylbenzene (PRP-1) stationary phases are compared for the chromatographic separation of inorganic analyte anions and cations using hydro-phobic ions of opposite charge as mobile phase additives. Tetra-alkylammonium salts were used for anion separations and alkyl sulfonate salts for cation separations. Two major equilibria influence the retention of analyte ions on PRP-1. These are: retention of the hydrophobic ion on PRP-1 and an ion exchange selectivity between the hydrophobic counterion and the analyte ion. When using RSi retention is also influenced by ion exchange at residual silanol groups, which act as weak cation exchange sites. Mobile and stationary phase variables that influence analyte retention are identified. Optimization of these provides favorable eluting conditions for the separation of inorganic ionic analytes. Of particular interest is the potential use of PRP-1 and RSi columns for the separation of inorganic cations; conditions for the separation of alkali metals and alkaline earths are discussed.  相似文献   

15.
Ultra-performance liquid chromatography (UPLC) in reversed-phase (RP), ion pair (IP) and hydrophilic interaction chromatography (HILIC) has been investigated for the separation of imidazolium-based ionic liquid (IL) cations. Among the three stationary phases (i.e., C18, C8 and phenyl) studied under RP conditions the phenyl phase provided much stronger retention for the IL cations. Four acids (hydrochloric, methanesulfonic, perchloric and trifluoroacetic) as mobile phase additives were compared in light of their effects on the retention of IL cations. It was shown that the retention of all IL cations decreased upon acidification of the mobile phase, possibly due to suppression of residual silanol ionization. Very fast (~3 min) and efficient RP-UPLC separation of six cations was achieved by gradient elution with acetonitrile?Cwater mobile phase containing 2.5 mmol L?1 perchloric acid. In IP-UPLC all solutes were well resolved in about 4 min by gradient elution with acetonitrile?Cwater mobile phase containing 1 mmol L?1 sodium 1-octanesulfonate as ion pairing reagent. Finally, under HILIC conditions by using isocratic elution with acetonitrile?Cwater (85:15, v/v) mobile phase containing 5 mmol L?1 ammonium formate (pH 3.2) the separation time was reduced to less than 2 min while maintaining excellent peak shapes and sufficient resolution. Compared to current LC systems UPLC allowed considerably faster separations with better peak shapes.  相似文献   

16.
本文研究了Keggin型杂多酸盐在四丁基铵-磷酸盐缓冲液-甲醇体系中的色谱保留行为。导出了反相离子对色谱中离子对试剂浓度, 强溶剂浓度及离子强度影响溶质保留值的三个规律式, 并用实验及文献值进行验证, 在所研究的体系中, 不同电荷数的杂多酸阴离子都可有保留, 通过调节适当的离子对试剂浓度及强溶剂浓度,可改善其选择性。  相似文献   

17.
An ion‐pair reversed‐phase high‐performance liquid chromatographic method, using tetrabutylammonium bromide (TBAB) as ion‐pair reagent, has been developed for the analysis of cyanuric acid (CA) in milk powder and swimming pool water. It was found that the effect of the concentrations of ion‐pair reagent on the retention of cyanuric acid was different for standard solution and different real samples. The separation was carried out on a reversed‐phase C18 column with 85:15 (V/V) water‐acetonitrile (ACN) containing different concentration of TBAB as mobile phase for different samples. The linear range of the calibration curve for CA was 0.1–100 mg·L?1. The detection limits calculated at S/N=3 was 0.11 mg·L?1 for the analysis of milk powder and 0.31 mg·L?1 for the analysis of swimming pool water, respectively. The method was successfully applied to the analysis of CA in milk powder and swimming pool water.  相似文献   

18.
The retention properties in electrically driven systems with monomeric additives were compared to an electrokinetic chromatographic system with a linear, charged polymer of similar chemical structure (all additives are quaternary tetraalkyl ammonium ions). The monomeric additives were tetramethylammonium (TMA), tetraethylammonium (TEA) and dimethylpyrrolidinium (DMP), respectively, the polymeric additive was poly(diallyldimethyl)ammonium (PDADMA). The additive concentration in the background electrolyte was 2 and 4% (w/w). The retention characteristics were based on the apparent mobilities of 10 non-charged analytes with different chemical functionality, which were transported by the anodic electroosmotic flow in the dynamically coated capillary, and retained by the counter-flowing cationic additives. From these data capacity factors were derived, which ranged up to 0.8. Association constants were calculated, and were found between 10 and 170. Roughly, the association constants increased for a given analyte in the sequence TMA相似文献   

19.
Stereoselective HPLC separations of five sterically constrained monoterpene‐based 2‐aminocarboxylic acid enantiomers were carried out by using the newly developed zwitterionic chiral stationary phases Chiralpak ZWIX(+)? and ZWIX(?)? based on Cinchona alkaloid. In order to optimize the retention and enantioselectivity parameters, the ratio of the different organic solvents in the mobile phase and the nature of the acid and base additives (counter‐ and co‐ions) were systematically varied. The effects of structure variants of the analytes on the resolution were investigated. The elution sequence was determined in all cases and observed to be opposite on ZWIX(+)? and ZWIX(?)?.  相似文献   

20.
Six complexones have been investigated as on-column derivatizing agents for the simultaneous separation of inorganic anions and cations using ion pair chromatography. UV spectrophotometry at 210 nm has been applied for both the direct and the indirect detection of anions and anionic metal complexes. Under the experimental conditions used DCTA and DTPA have been practically applicable. Factors affecting the chromatographic behaviour of analyte ions have been studied. Chloride, nitrite, nitrate sulphate, chromate, molybdate, iron, chromium (III), copper (II), cobalt (II), nickel (II) and mercury (II) ions have been separated in 30 min with a mobile phase containing 1 mmol/1 TBA and 0.5 mmol/1 DCTA at pH 6.2 in acetonitrile-water (10:90 v/v). With DTPA as eluent and using pre-column derivatization of metal cations with DCTA eight anions and six metal cations can be separated. The detection limits are less than 0.1 mg/l for most of the investigated ions. Permanent address: Department of Analytical Chemistry, Vilnius University, Naugarduko 24, 2006 Vilnius, Lithuania  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号