首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite their simple structure and design, microcantilevers are receiving increased attention due to their unique sensing and actuation features in many MEMS and NEMS. Along this line, a non-linear distributed-parameters modeling of a microcantilever beam under the influence of a nanoparticle sample is studied in this paper. A long-range Van der Waals force model is utilized to describe the microcantilever-particle interaction along with an inextensibility condition for the microcantilever in order to derive the equations of motion in terms of only one generalized coordinate. Both of these considerations impose strong nonlinearities on the resultant integro-partial equations of motion. In order to provide an understanding of non-linear characteristics of combined microcantilever-particle system, a geometrical function is wisely chosen in such a way that natural frequency of the linear model exactly equates with that of non-linear model. It is shown that both approaches are reasonably comparable for the system considered here. Linear and non-linear equations of motion are then investigated extensively in both frequency and time domains. The simulation results demonstrate that the particle attraction region can be obtained through studying natural frequency of the system consisting of microcantilever and particle. The frequency analysis also proves that the influence of nonlinearities is amplified inside the particle attraction region through bending or shifting the frequency response curves. This is accompanied by sudden changes in the vibration amplitude estimated very closely by the non-linear model, while it cannot be predicted by the best linear model at all.  相似文献   

2.
Characteristic non-linear effects can be observed, when piezoceramics are excited using weak electric fields. In experiments with longitudinal vibrations of piezoceramic rods, the behavior of a softening Duffing-oscillator including jump phenomena and multiple stable amplitude responses at the same excitation frequency and voltage is observed. Another phenomenon is the decrease of normalized amplitude responses with increasing excitation voltages. For such small stresses and weak electric fields as applied in the experiments, piezoceramics are usually described by linear constitutive equations around an operating point in the butterfly hysteresis curve. The non-linear effects under consideration were, e.g. observed and described by Beige and Schmidt [1,2], who investigated longitudinal plate vibrations using the piezoelectric 31-effect. They modeled these non-linearities using higher order quadratic and cubic elastic and electric terms. Typical non-linear effects, e.g. dependence of the resonance frequency on the amplitude, superharmonics in spectra and a non-linear relation between excitation voltage and vibration amplitude were also observed e.g. by von Wagner et al. [3] in piezo-beam systems. In the present paper, the work is extended to longitudinal vibrations of non-slender piezoceramic rods using the piezoelectric 33-effect. The non-linearities are modeled using an extended electric enthalpy density including non-linear quadratic and cubic elastic terms, coupling terms and electric terms. The equations of motion for the system under consideration are derived via the Ritz method using Hamilton's principle. An extended kinetic energy taking into consideration the transverse velocity is used to model the non-slender rods. The equations of motion are solved using perturbation techniques. In a second step, additional dissipative linear and non-linear terms are used in the model. The non-linear effects described in this paper may have strong influence on the relation between excitation voltage and response amplitude whenever piezoceramic actuators and structures are excited at resonance.  相似文献   

3.
This paper aims to study the nonlinear-forced vibrations of a viscoelastic cantilever with a piecewise piezoelectric actuator layer on its top surface using the method of Multiple Scales. The governing equation of motion is a second-order nonlinear ordinary differential equation with quadratic and cubic nonlinearities which appear in stiffness, inertia, and damping terms. The nonlinear terms are due to the piezoelectricity, viscoelasticity, and geometry of the system. Forced vibrations of the system are investigated in the cases of primary resonance and non-resonance hard excitation including subharmonic and superharmonic resonances. Analytical expressions for frequency responses are derived, and the effects of different parameters including damping coefficient, thickness to width ratio of the beam, length and position of the piezoelectric layer, density of the beam, and the piezoelectric coefficient on the frequency-response curves are discussed for each case. It is shown that in all these cases, the response of the system follows a softening behavior due to the existence of the piezoelectric layer. The piezoelectric layer provides an effective tool for active control of vibration. In addition, the effect of the viscoelasticity of the beam on passive control of amplitude of vibration is illustrated.  相似文献   

4.
Linear and non-linear vibrations of a U-shaped hollow microcantilever beam filled with fluid and interacting with a small particle are investigated. The microfluidic device is assumed to be subjected to internal flowing fluid carrying a buoyant mass. The equations of motion are derived via extended Hamilton's principle and by using Euler-Bernoulli beam theory retaining geometric and inertial non-linearities. A reduced-order model is obtained applying Galerkin's method and solved by using a pseudo arc-length continuation and collocation scheme to perform bifurcation analysis and obtain frequency response curves. Direct time integration of the equations of motion has also been performed by using Adams-Moulton method to obtain time histories and analyze transient cantilever-particle interactions in depth. It is shown that exploiting near resonant non-linear behavior of the microcantilever could potentially yield enhanced sensor metrics. This is found to be due to the transitions that occur as a matter of particle movement near the saddle-node bifurcation points of the coupled system that lead to jumps between coexisting stable attractors.  相似文献   

5.
The use of non-linear energy sink to passively control vibrations of a non-linear main structure under the effect of bi-frequency harmonic excitation is addressed here. The excitation is assumed to induce both 1:1 and 1:3 resonance, and the response of the system is studied after using the Multiple Scale/Harmonic Balance Method, applied to obtain amplitude modulation equations in the slow time scale. The efficiency of the non-linear energy sink to reduce or suppress vibrations of the main structure is finally discussed.  相似文献   

6.
Theoretical and experimental non-linear vibrations of thin rectangular plates and curved panels subjected to out-of-plane harmonic excitation are investigated. Experiments have been performed on isotropic and laminated sandwich plates and panels with supported and free boundary conditions. A sophisticated measuring technique has been developed to characterize the non-linear behavior experimentally by using a Laser Doppler Vibrometer and a stepped-sine testing procedure. The theoretical approach is based on Donnell's non-linear shell theory (since the tested plates are very thin) but retaining in-plane inertia, taking into account the effect of geometric imperfections. A unified energy approach has been utilized to obtain the discretized non-linear equations of motion by using the linear natural modes of vibration. Moreover, a pseudo arc-length continuation and collocation scheme has been used to obtain the periodic solutions and perform bifurcation analysis. Comparisons between numerical simulations and the experiments show good qualitative and quantitative agreement. It is found that, in order to simulate large-amplitude vibrations, a damping value much larger than the linear modal damping should be considered. This indicates a very large and non-linear increase of damping with the increase of the excitation and vibration amplitude for plates and curved panels with different shape, boundary conditions and materials.  相似文献   

7.
This paper deals with the non-linear vibrations of an elastic two-story structure with two liquid tanks installed under horizontal harmonic excitation. The influence of the configuration of the two rectangular tanks on the response of the structure is investigated. In the theoretical analysis, Galerkin's method is applied to derive the equations of motion for the structure and the modal equations for sloshing, while considering the non-linear liquid forces. Then, van der Pol's method is used to determine the frequency response curves. Three cases are investigated: In the first case two tanks are installed, one on the top and one on the second story of the structure, in the second case one tank is installed on top, and in the third case two tanks are installed on top. The theoretical results of the first case are compared with those of the second and third cases. In the numerical calculations, it is found that Hopf bifurcations occur near the tuning frequency and then amplitude modulated motion appears in both the first and third cases. It is thus concluded that multiple tanks yield less effectiveness in suppressing the vibrations of the structure. The experimental data confirm the validity of the theoretical results for the first and third cases.  相似文献   

8.
Non-linear free and forced vibrations of doubly curved isotropic shallow shells are investigated via multi-modal Galerkin discretization and the method of multiple scales. Donnell’s non-linear shallow shell theory is used and it is assumed that the shell is simply supported with movable edges. By deriving two different forms of the stress function, the equations of motion are reduced to a system of infinite non-linear ordinary differential equations with quadratic and cubic non-linearities. A quadratic relation between the excitation and the fundamental frequency is considered and it is shown that, although in case of hardening non-linearities the results resemble those found via numerical integration or continuation softwares, in case of softening non-linearity the solution breaks down as the amplitude becomes larger than the thickness. Results reveal that, expressing the relation between the excitation and fundamental frequency in this form, which was considered by many researchers as a useful tool in analyzing strong non-linear oscillators, yields in spurious results when the non-linearity becomes of softening type.  相似文献   

9.
Vibration analysis of a non-linear parametrically self-excited system with two degrees of freedom under harmonic external excitation was carried out in the present paper. External excitation in the main parametric resonance area was assumed in the form of standard force excitation or inertial excitation. Close to the first and second free vibrations frequency, the amplitudes of the system vibrations and the width of synchronization areas were determined. Stability of obtained periodic solutions was investigated. The analytical results were verified and supplemented with the effects of digital and analog simulations.  相似文献   

10.
Non-linear vibrations of cantilever beams with feedback delays   总被引:1,自引:0,他引:1  
A comprehensive investigation of the effect of feedback delays on the non-linear vibrations of a piezoelectrically actuated cantilever beam is presented. In the first part of this work, we examine the linear and non-linear free responses of a beam subjected to a delayed-acceleration feedback. We show that the trivial solution loses stability via a Hopf bifurcation leading to limit-cycle oscillations. We analyze the stability of the dynamic response in the postbifurcation, close to the stability boundaries by examining the nature of the Hopf bifurcation and away from the stability boundaries by using the method of harmonic balance and Floquet theory. We find that, increasing the gain for certain feedback delays may culminate in quasiperiodic and chaotic oscillations of the beam.In the second part, we analyze the effect of feedback delays on a beam subjected to a harmonic base excitations. We find that the nature of the forced response is largely defined by the stability of the trivial solutions of the unforced response. For stable trivial solutions (i.e., inside the stability boundaries of the trivial solutions), the homogeneous response emanating from the feedback diminishes, leaving only the particular solution resulting from the external excitation. In this case, delayed feedback acts as a vibration absorber. On the other hand, for unstable trivial solutions, the response contains two co-existing frequencies. Depending on the excitation amplitude and the commensurability of the delayed-response frequency to the excitation frequency, the response is either periodic or quasiperiodic.  相似文献   

11.
Garg  Anshul  Dwivedy  Santosha K. 《Nonlinear dynamics》2020,101(4):2107-2129

In this work, theoretical and experimental analysis of a piezoelectric energy harvester with parametric base excitation is presented under combination parametric resonance condition. The harvester consists of a cantilever beam with a piezoelectric patch and an attached mass, which is positioned in such a way that the system exhibits 1:3 internal resonance. The generalized Galerkin’s method up to two modes is used to obtain the temporal form of the nonlinear electromechanical governing equation of motion. The method of multiple scales is used to reduce the equations of motion into a set of first-order differential equations. The fixed-point response and the stability of the system under combination parametric resonance are studied. The multi-branched non-trivial response exhibits bifurcations such as turning point and Hopf bifurcations. Experiments are performed under various resonance conditions. This study on the parametric excitation along with combination and internal resonances will help to harvest energy for a wider frequency range from ambient vibrations.

  相似文献   

12.
Bolted joint structures are prone to bolt loosening under environmental and operational vibrations, which may severely affect the structural integrity. This paper presents a bolt looseness recognition method based on the subharmonic resonance analysis. The bolted joint structure was simplified to a two-degree-of-freedom nonlinear model, and a multiple timescale method was used to explain the phenomenon of the subharmonic resonance and conditions for the generation of subharmonics. Numerical simulation predictions for the generation of the subharmonics and conditions for the subharmonics can be found with respect to the excitation frequency and the excitation amplitude. Experiments were performed on a bolt-joint aluminum beam, where the damage was simulated by loosening the bolts. Two surface-bonded piezoelectric transducers were utilized to generate continuous sinusoidal excitation and to receive corresponding sensing signals. The experimental results demonstrated that subharmonic components would appear in the response spectrum when the bolted structure was subjected to the excitation of twice its natural frequency. This subharmonic resonance method was found to be effective on bolt looseness detection.  相似文献   

13.
A wide range of non-linear effects are observed in piezoceramic materials. For small stresses and weak electric fields, piezoceramics are usually described by linearized constitutive equations around an operating point. However, typical non-linear vibration behavior is observed at weak electric fields near resonance frequency excitations of the piezoceramics. This non-linear behavior is observed in terms of a softening behavior and the decrease of normalized amplitude response with increase in excitation voltage. In this paper the authors have attempted to model this behavior using higher order cubic conservative and non-conservative terms in the constitutive equations. Two-dimensional kinematic relations are assumed, which satisfy the considered reduced set of constitutive relations. Hamilton's principle for the piezoelectric material is applied to obtain the non-linear equation of motion of the piezoceramic rectangular parallelepiped specimen, and the Ritz method is used to discretize it. The resulting equation of motion is solved using a perturbation technique. Linear and non-linear parameters for the model are identified. The results from the theoretical model and the experiments are compared. The non-linear effects described in this paper may have strong influence on the design of the devices, e.g. ultrasonic motors, which utilize the piezoceramics near the resonance frequency excitation.  相似文献   

14.
The mechanism of cable end angle-variation induced oscillations in the non-linear interactions between beams and cables in stayed-systems is first explained by a proposed analytical model. It is then verified by both experimental and finite element models. The non-linear interaction maximizes its effects for cable oscillations when inherent quadratic coupling between local and global modes produces energy transfer from low to high frequency vibrations by means of a one-to-two global-local autoparametric resonance. The response of the analytical model is fully described using a continuation method applied directly to the reduced two degree of freedom discrete model showing that, for a selected one-to-two global-local resonant system, primary harmonic excitation of the global mode produces large oscillations of the local mode at twice the excitation frequency. Detailed comparisons between the responses of the analytical model, experimental results and finite element simulations show excellent agreement both in the qualitative behaviour and in the calculated/measured response amplitudes.  相似文献   

15.
The potential of harvesting vibratory energy via a bistable beam subjected to subharmonic parametric excitations is investigated. The vibrating structure is a buckled beam with two stable equilibria separated by a potential barrier. The beam is subjected to a superposition of a static axial load beyond its buckling load and a harmonic axial excitation whose frequency is around twice the frequency of the buckled beam’s first vibration mode. A macro-fiber composite patch is attached to one side of the beam to convert the strain energy resulting from the beam’s oscillation into electricity. The study considers two regimes of excitations: an amplitude sweep and a frequency sweep. In the first regime, the amplitude of excitation is quasi-statically varied while the excitation frequency is tuned at twice the natural frequency of the first vibration mode. In the second regime, the excitation frequency is swept forward and backward around the subharmonic resonant frequency while the amplitude of excitation is kept constant. A theoretical model which governs the electromechanical coupling of the transverse vibrations of the beam and the output voltage is used to monitor the response as the excitation parameters are changed. An experimental setup is also built and a series of tests is performed to validate the theoretical findings. It is shown that, depending on the amplitude and frequency of excitation, the harvester can perform small-amplitude periodic intra-well motion, intra- and inter-well chaotic motions, as well as periodic inter-well motions. Experimental results also show that, as compared to the classical linear resonance, utilizing the sub-harmonic resonance of a bistable energy harvesters can result in a broadband frequency response.  相似文献   

16.
This study is devoted to the experimental validation of a theoretical model of large amplitude vibrations of thin spherical shells described in a previous study by the same authors. A modal analysis of the structure is first detailed. Then, a specific mode coupling due to a 1:1:2 internal resonance between an axisymmetric mode and two companion asymmetric modes is especially addressed. The structure is forced with a simple-harmonic signal of frequency close to the natural frequency of the axisymmetric mode. The experimental setup, which allows precise measurements of the vibration amplitudes of the three involved modes, is presented. Experimental frequency response curves showing the amplitude of the modes as functions of the driving frequency are compared to the theoretical ones. A good qualitative agreement is obtained with the predictions given by in the model. Some quantitative discrepancies are observed and discussed, and improvements of the model are proposed.  相似文献   

17.
吴斌  刘麒  焦敬品  何存富 《实验力学》2011,26(6):639-644
兰姆波模态调谐是指在确定的压电传感器条件下,通过频率选择实现单一兰姆波模态检测的方法.本文在兰姆波模态调谐的理论指导下,实现了单一兰姆波模态激励和调控.同时,研究了实验条件,如粘接剂性能和传感器上粘结位置对兰姆波调谐模态控制的影响.结果表明,对于不同的粘接剂,固化后硬度越高,其实验结果与理论结果的一致性越好;对于同一种粘接剂,边缘位置的粘贴会使非对称模态应力幅值增大,从而对模态调控的实现造成一定的影响.  相似文献   

18.
A new method for time domain simulation of cross-flow vortex-induced vibrations of slender circular cylindrical structures is developed. A model for the synchronization between the lift force and structure motion is derived from already established data for the cross-flow excitation coefficient. The proposed model is tested by numerical simulations, and the results are compared to experimental observations. When a sinusoidal cross-flow motion is given as input to the algorithm, the generated force time series are generally in good agreement with experimental measurements of cross-flow force in phase with cylinder velocity and acceleration. The model is also utilized in combination with time integration of the equation of motion to simulate the cross-flow vibration of a rigid cylinder. The resulting amplitude and frequency of motion as functions of reduced velocity are compared to published experimental results. In combination with the finite element method, the model is used to simulate cross-flow vibrations of a flexible cylinder in shear flow. Comparison with experiments shows that the model is capable of reproducing important quantities such as frequency, mode and amplitude, although some discrepancies are seen. This must be expected due to the complexity of the problem and the simple form of the present method.  相似文献   

19.
曹东兴  马鸿博  张伟 《力学学报》2019,51(4):1148-1155
流致振动蕴含巨大的能量, 本文基于流致振动理论,设计了一种附加磁力激励的压电悬臂梁流致振动俘能器,并通过理论和实验研究其振动俘能特性.该俘能器由压电悬臂梁、圆柱绕流体和磁铁组成;首先基于Euler-Bernoulli梁理论,推导了流致振动附磁压电俘能器的能量函数,利用Hamilton原理建立了流致振动附磁压电俘能器的机电耦合方程;利用数值方法研究详细分析了流速、圆柱绕流体直径和长度、磁间距、磁极和外接电阻等系统参数对压电俘能器振动特性和输出电压的影响.分析结果表明, 该型压电俘能器的振动幅值在低流速条件下产生涡激振动,并产生最大的输出电压;磁力可以降低压电俘能器的共振频率并能够拓宽压电俘能器频带带宽,因此,附磁压电俘能器具有相比没有附磁的压电俘能器更适用于低速层流环境;实验结果与数值结果吻合较好,验证了附磁压电悬臂梁流致振动俘能器的理论分析的正确性.   相似文献   

20.
The forced non-linear vibrations of an axially moving beam fitted with an intra-span spring-support are investigated numerically in this paper. The equation of motion is obtained via Hamilton??s principle and constitutive relations. This equation is then discretized via the Galerkin method using the eigenfunctions of a hinged-hinged beam as appropriate basis functions. The resultant non-linear ordinary differential equations are then solved via either the pseudo-arclength continuation technique or direct time integration. The sub-critical response is examined when the excitation frequency is set near the first natural frequency for both the systems with and without internal resonances. Bifurcation diagrams of Poincaré maps obtained from direct time integration are presented as either the forcing amplitude or the axial speed is varied; as we shall see, a sequence of higher-order bifurcations ensues, involving periodic, quasi-periodic, periodic-doubling, and chaotic motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号