首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conduct a series of large eddy simulations (LES) of turbulent boundary layers over arrays of cuboidal roughness elements at arbitrary orientation angles (non-frontal orientations with the incident flow). Flow response to changing roughness orientation is systematically studied at two ground coverage densities, λp = 0.06 and 0.11. As expected, the effective roughness heights zo measured from LES are higher for λp = 0.11 than for λp = 0.06, although appreciable changes both in zo and wall shear stress (friction velocity) are observed at both ground coverage densities as the roughness orientation angle changes. This suggests the necessity of accounting for detailed rough wall topology (including more information than just λp, λf) when relating rough wall morphology to its aerodynamic properties. To this end, a recently developed analytical rough wall parameterisation is used to predict the aerodynamic properties of the simulated rough surfaces. In this rough wall model, wake interactions among roughness elements are explicitly modelled using the concept of sheltering height and exponential attenuation coefficient. As a result, the parameterisation is responsive to detailed ground roughness arrangements and flow conditions, including roughness height variations, element orientation, incident flow direction, transverse displacements, etc. Model-predicted effective roughness heights, wall stress, mean velocity at the height of the roughness, and in some cases displacement height, are compared against the LES measurements from this study as well as numerical/experiment measurements from other authors. The predictions from the model are found to agree well with the measurements both in trends and in absolute values, thus extending the applicability of the analytical rough wall model to more general surfaces than those previously tested.  相似文献   

2.
The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling–recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.  相似文献   

3.
Large-eddy simulations are carried out in turbulent open-channel flows to determine the roughness function and the equivalent sand-grain roughness height, ks, over sand-grain roughness and different types of realistic roughness replicated from hydraulic turbine blades. A range of Reynolds numbers and mean roughness heights is chosen, leading to both transitionally and fully rough regimes. The start of the fully rough regime is shown to depend on the roughness type, and ks depends strongly on the surface topography. We then examine several existing correlations that predict ks based on the information of the surface geometry. In the cases where the surface slope is an important parameter, the moments of surface height statistics do not predict the roughness function, while the existing forms of slope-based correlations perform well. The range of applicability of various correlations is shown to vary with the roughness topography, as the critical value of the effective slope, separating the waviness and roughness regimes, is shown to be higher for a realistic surface, compared to the value for the more regular types of roughness that were previously studied.  相似文献   

4.
An extension of Euler–Bernoulli theory based on variational methods for solving flexural vibrations of nanorods has been developed which takes into account geometrical surface roughness effects, as well as internal and external friction. We apply this method to study the vibrations of e-beam induced SiO2 nanorods in the range of 10 nm in diameter and 450 nm in length. Image detection of surface roughness was carried out with the Canny edge detection algorithm. The measured surface height–height correlation function is used to characterize the surface roughness and to test for self-affine behavior. A scheme for generating random rough surfaces representative of the measured SiO2 is described along with a statistical analysis of their effect on resonant frequencies and quality factors.  相似文献   

5.
A large eddy simulation (LES) was conducted of turbulent flow in a channel with a rough wall on one side and a free surface on the other by adopting an anisotropy-resolving subgrid-scale (SGS) model. A shear Reynolds number of Reτ = 395 was used based on the mean friction velocity and channel height. To investigate the grid dependency of the LES results caused by the SGS model, three grid resolutions were tested under the same definition of a roughness shape by using the immersed boundary method. The results obtained were compared with direct numerical simulation data with and without the wall roughness and those without the extra anisotropic term. The primary focus was on how the present anisotropic SGS model with coarser grid resolutions can properly provide the effects of roughness on the mean velocity and turbulent stresses, leading to a considerable reduction of the computational cost of LES.  相似文献   

6.
In this paper,the dynamic characteristics of building clusters are simulated by large eddy simulation at high Reynolds number for both homogeneous and heterogeneous building clusters.To save the computational cost a channel-like flow model is applied to the urban canopy with free slip condition at the upper boundary.The results show that the domain height is an important parameter for correct evaluation of the dynamic characteristics.The domain height must be greater than 8h(h is the average building height)in order to obtain correct roughness height while displacement height and roughness sublayer are less sensitive to the domain height.The Reynolds number effects on the dynamic characteristics and flow patterns are investigated.The turbulence intensity is stronger inside building cluster at high Reynolds number while turbulence intensity is almost unchanged with Reynolds number above the building cluster.Roughness height increases monotonously with Reynolds number by 20%from Re*=103 to Re*=105 but displacement height is almost unchanged.Within the canopy layer of heterogeneous building clusters,flow structures vary between buildings and turbulence is more active at high Reynolds number.  相似文献   

7.
This paper presents experimental investigation of upstream roughness and Reynolds number effects on the recirculation region over a smooth forward facing step. The upstream rough wall was produced from 1.5 mm sand grains and the Reynolds number based on step height, Reh, was varied from 2040 to 9130 for both the upstream smooth and rough walls. For the smooth wall, the reattachment length increased monotonically with Reh to an asymptotic value of 2.2 step heights for Reh ≥ 6380. Upstream roughness reduced the reattachment length by 44% because of larger momentum deficit and higher turbulence level in the rough wall boundary layer. The mean velocities and Reynolds stresses were also reduced by roughness. The Reynolds shear stress and production of turbulent kinetic energy showed high negative values at the leading edge of the step indicating counter-gradient diffusion. The implications of these results for standard eddy viscosity models are discussed.  相似文献   

8.
Effects of the upstream conditions and the degree of the wall roughness on the mean velocity profiles and some integral flow parameters in two dimensional zero-pressure-gradient boundary layer were characterized experimentally. The results were analyzed utilizing conventional and recent scaling flow parameters for 245< Re θ ≤ 11·103, where Re θ is the Reynolds number based on the free stream velocity (Ū ) and the momentum thickness (θ). Good correlation of the quantity ΔŪ + as a function of the roughness parameter k + was obtained for sand roughness of 1.7 < k + ≤ 172, revealing a universality of the roughness effect, where ΔŪ + = = (Ū Ū)/u τ and K + = ku τ /v.The mean flow structure of the outer flow was observed not to be influenced by the degree of the wall roughness, i. e., the outer flow of either the smooth or the rough surfaces scales similarly with the various scaling parameters regardless the degree of the wall roughness. However, it made flow confined to the wall region away from the classical universality, allowing similarity hypothesis not to be identical in the wall region at least for the current range of the Reynolds number.  相似文献   

9.
Flow visualization was used to study the fluid-structure interaction between a circular cylinder and a shallow turbulent open channel flow. The Reynolds number ranged from Re D = 1500–4400 based on the cylinder diameter, and from Re H =7,800?27,600 based on the channel hydraulic radius. The cylinder was mounted vertically on the channel bed and the flow depth-to-cylinder-diameter ratio was varied fromd/D=7.0?11.7. Tests were carried out over smooth and rough beds, with the rough beds being either permeable or impermeable. The study showed that the horseshoe vortex forming at the cylinder-bed junction affects many of the flow structures, including the mode of vortex shedding, the shear layer dynamics, the vortex formation length, and the width of the near-wake region. The influence of the horseshoe vortex can be recognized throughout the depth of flow; however, its influence decreases with an increase in distance from the channel bed. It was also possible to discern that the bed roughness resulted in a change to the above interaction and the permeability of the bed resulted in additional changes.  相似文献   

10.
刘明霞  黄平  张建民  徐可为 《物理学报》2008,57(4):2363-2367
采用直流磁控溅射方法制备了不同调制比的Ni/Al纳米多层膜,利用X射线衍射技术和纳米压入连续刚度法分析了薄膜微结构及塑性变形的尺度依赖性.实验结果表明,尽管调制比有所不同,多层膜的硬度与“软"相的微结构特征参量随调制波长减小具有相似变化规律,说明多层膜的变形机制对“软"相的微结构约束存在敏感性.随着薄膜特征尺度的减小,为统一多层膜中晶界和膜界两种强化机制,提出一个与“软”相相关的表征参量r(rLsub/d,L关键词: 纳米多层膜 塑性变形 调制波长 Hall-Petch关系  相似文献   

11.
Influence of elasticity module of coating material on the parameters of hard compliant coatings deformation has been analysed. Calculation using two-dimensional model has shown that maximum coating deformation is achieved at the ratio of flow rate U to the parameter C t 0 = (E/3ρ)0.5 approximately equal to 2.5, however, velocity of wall surface motion has first local maximum at U/C t 0≈1. The range of coating parameters’ values at which compromise between its hardness and intensity of interaction with turbulent flow is provided has been determined. For rubbery materials with Poisson coefficient of about 0.5, correlations of the flow velocity and parameter C t 0 shall be in the range 1÷1.5. It is shown that at such parameters, the mean square value of the coating surface deflection/inflection is less than the viscous sublayer thickness, its correlation with the wavelength is very small and equals (1÷5)·10−4. Such form of deformed surface fundamentally differs from the parameters of the wave wall in Kendall’s experiments which results are used for calculation of inverse influence of wall deformation on the flow. It was assumed that solid compliant coatings do not cause instability of interaction with the ambient flow.  相似文献   

12.
吴云  李应红  贾敏  梁华  宋慧敏 《中国物理 B》2012,21(4):45202-045202
In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N 2 (C 3 Π u ) rotational and vibrational temperatures are around 430 K and 0.24 eV, respectively. The emission intensity ratio between the first negative system and the second positive system of N 2 , as a rough indicator of the temporally and spatially averaged electron energy, has a minor dependence on applied voltage amplitude. The induced flow direction is not parallel, but vertical to the dielectric layer surface, as shown by measurements of body force, velocity, and vorticity. Nanosecond discharge plasma aerodynamic actuation is effective in airfoil flow separation control at freestream speeds up to 100 m/s.  相似文献   

13.
We calculate the density of states of a 2D electron gas in finite barrier height quantum wells with the explicit inclusion of the interface roughness effect. By using Feynman path-integral method, the analytic expression is derived. The results show that the 2D density of states is dependent on the RMS of the fluctuation potential. The interface roughness causes localized states below the subband edge. We also apply the theory to model the finite barrier height quantum wells in AlxGa1?xAs/GaAs.  相似文献   

14.
基于分形几何学,研究了表面粗糙度的分形特征.采用Weierstrass- Mandelbrot函数对多尺度自仿射的表面粗糙度进行了描述;建立了微通道内层流流动的三维模型并对表面粗糙度的影响进行了数值模拟,分析了雷诺数、相对粗糙度和分形维数对流动阻力特性的影响.研究结果表明,与常规尺度通道不同,粗糙微通道的Poiseuille数不再是常数,而是随雷诺数近似线性增加;相对粗糙度越大,流动产生的回流和分离所导致的流动压降越明显.在相同的相对粗糙度下,粗糙表面的分形维数越大,表面轮廓变化就越频繁,这也将导致流动阻 关键词: 粗糙度 层流阻力系数 微通道 分形  相似文献   

15.
We study the evolution of the dark energy parameter in a spatially homogeneous and isotropic FRW space-time filled with barotropic fluid and dark energy by considering a time dependent deceleration parameter. Two cases are discussed when the dark energy is minimally coupled to the perfect fluid as well as direct interaction with it. It is concluded that in both non-interacting and interacting cases only open and flat universes cross the phantom region. We find that during the evolution of the universe, the equation of state (EoS) for dark energy ω D changes from ω D >−1 to ω D <−1, which is consistent with recent observations. The cosmic jerk parameter in our derived models is also found to be in good agreement with the recent data of astrophysical observations.  相似文献   

16.
ABSTRACT

In the present study, molecular dynamics (MD) simulation was used to investigate the relationship between wetting behaviour and slip length on patterned substrates. We adopted two solid surfaces of Si(100) and graphite due to similarities in their intrinsic contact angle. Contact angle and apparent slip length were obtained using discrete simulations with the same thermodynamic states. In the present study, a number of questions regarding surface roughness and the problem of contact angle (θ) and slip length (Ls) are discussed. These questions include the relationship between θ and surface roughness, the characteristics used to describe the difference between static and dynamic fluid fields and the reason for a lack of multilayer sticking observed in the current cases. Our results indicate that the quasi-universal θ ? Ls equation proposed by Hung et al. (2008) is applicable to cases involving a Cassie-like nanoscale roughened surface. In contrast, in cases with a Wenzel-like nanostructure, the no-slip boundary conditions are independent of variations in the contact angle. The adoption of a Wenzel–Cassie hybrid model helped to verify that the fluid density inside the cavity is a critical indicator of wettability of the wall–fluid interface. Our results also demonstrate that ρf, cav is a critical property in the measurement of hydrodynamic effects and thus its importance as an indicator of the validity of the equation θ ? Ls. The average time that water molecules are trapped and the number of averaged hydrogen bonds within cavities in a dynamic fluid field were also investigated.

  相似文献   

17.
Large-eddy simulations were carried out to study the effects of surface roughness on a plane wall-jet using the Lagrangian dynamic eddy-viscosity subgrid-scale model, at Re = 7500 (based on the jet bulk velocity and height). Results over both smooth and rough surfaces were validated by experimental data at the same Reynolds number. As the jet is injected into the still environment, large-scale rollers are generated in the shear layer between the high-momentum fluid of the jet and the surrounding and are convected downstream with the flow. To understand the extent to which the outer-layer structures modify the flow in the inner layer and the extent to which the effect of roughness spreads away from the wall, both instantaneous and mean flow fields were investigated. The results revealed that, for the Reynolds number and roughness height considered in this study, the effect of roughness is mostly confined to the near-wall region of the wall jet. There is no structural difference between the outer layer of the wall jet over the smooth and rough surfaces. Roughness does not affect the size of the outer-layer structures or the scaling of the profiles of Reynolds stresses in the outer layer. However, in the inner layer, roughness redistributes stresses from streamwise to wall-normal and spanwise directions toward isotropy. Contours of joint probability-density function of the streamwise and wall-normal velocity fluctuations at the bottom of the logarithmic region match those of the turbulent boundary layer at the same height; while the traces of the outer-layer structure were detected at the top of the logarithmic region, indicating that they do not affect the flow very close to the wall, but still modify a major portion of the inner layer. This modification must be taken into consideration when the inner layer of a wall jet is compared with the conventional turbulent boundary layer.  相似文献   

18.
The erosion process of a stably stratified light gas layer by a vertical turbulent fountain of denser fluid inside a generic containment – for which experimental reference data are available – is studied computationally using large eddy simulation (LES). In addition, various Reynolds averaged Navier–Stokes (RANS) models are applied aiming at a comparative assessment of different computational approaches for the considered case. With the LES methodology included into the present modelling study, a novelty to date is established for fountain-stratification interaction inside generic containments. The high Reynolds number RANS models applied in the framework of this study include both the realisable k–? eddy viscosity model (EVM) as well as the basic Reynolds stress model (RSM). Furthermore, we show that certain regimes of the present configuration can be predicted using an analytically derived scaling approach. Various data beyond the experimentally obtained ones are computationally provided in order to facilitate the calibration of less costly statistical turbulence models and lumped parameter codes, since the presently considered configuration is regarded to be a valuable small-scale equivalent for containment flow applications.  相似文献   

19.
采用大涡模拟和浸没边界法相结合对不同高度和不同间距横向粗糙元壁面槽道湍流进行了模拟,得到了光滑壁面和粗糙壁面湍流的流向平均速度分布,雷诺剪切应力,脉动速度均方根和近壁区拟序结构。结果发现横向粗糙元降低了流向平均速度,增大了流动阻力,粗糙壁面湍流的雷诺剪切应力大于光滑壁面。粗糙元降低了流向脉动速度,增强了展向和法向脉动速度。粗糙元高度越高,对湍流流动影响越大,而粗糙元间距对湍流统计特性的影响不大。粗糙壁面仍然存在着和光滑壁面类似的条带结构。  相似文献   

20.
利用椭偏反射光谱不但验证了Si-SiO2界面是一祖糙面,而且在恰当的模拟形貌下,把这界面粗糙层等效为若干子层,用有效介质理论处理。分别得到各自的介电特性。通过多相椭偏光反射光谱的理论计算值ψcal,△cal与实验值ψexp,△exp的比较,把粗糙的高度H及相关长度L确定,把不同条件下制备的样品的粗糙度和它们的电气性能相对比,发现两者之间的趋势十分一致。同时发现,在界面上Si的介电常数具有轻度的各向异性。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号