首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We prove a principle of linearized stability for semiflows generated by neutral functional differential equations of the form x′(t) = g(? x t , x t ). The state space is a closed subset in a manifold of C 2-functions. Applications include equations with state-dependent delay, as for example x′(t) = a x′(t + d(x(t))) + f (x(t + r(x(t)))) with \({a\in\mathbb{R}, d:\mathbb{R}\to(-h,0), f:\mathbb{R}\to\mathbb{R}, r:\mathbb{R}\to[-h,0]}\).  相似文献   

2.
Mechanical properties of a hard and stiff W-C coating on steel substrate have been investigated using nanoindentation combined with finite element modeling (FEM) and extended FEM (XFEM). The significant pile-up observed around the indents in steel substrate caused an overestimation of hardness and indentation modulus. A simple geometrical model, considering the additional contact surfaces due to pile-up, has been proposed to reduce this overestimation. The presence of W-C coating suppressed the pile-up in the steel substrate and a transition to sink-in behavior occurred. The FEM simulations adequately reproduced the surface topography of the indents in the substrate and coating/substrate systems as well. The maximum principal stresses of the indented W-C/steel coated system were tensile; they were always located in the coating and evolved in 3 stages. Cohesive cracking occurred during loading in the sink-in zone (stage III) when the ultimate tensile strength (σ max ) of the coating was reached. The obtained hardness (H c ), indentation modulus (E c ), yield stress (Y) and strength (σ max ) of the W-C coating were H c ? =?20 GPa, E c ? =?250 GPa, Y?=?9.0 GPa and σ max ? =?9.35 GPa, respectively. XFEM resulted in fracture energy of the W-C coating of G?=?38.1 J?·?m-2 and fracture toughness of K IC ? =?3.5 MPa?·?m0.5.  相似文献   

3.
We study the influence of confinement on the rheology and structure of nematic liquid crystals (NLCs). NLCs get confined in networks of titania (TiO2, primary particle size = 21 nm) nanoparticles in suspensions of TiO2 and NLC, N-(4-methoxybenzylidene)-4-butylaniline (MBBA). Suspensions with TiO2 nanoparticle volume fraction (?) of 0.006–0.017, form viscoelastic solids with low elastic modulus (G′) of 101 Pa–102 Pa and short relaxation times. Increase in TiO2 nanoparticle ? leads to a rise in G′ with TiO2 nanoparticles forming a percolating network at a critical volume fraction (? c) = 0.023, and G′ of ~103 Pa. TiO2/MBBA NLC suspensions at and above ? c = 0.023 show G′ ~ ω x?1 scaling, where ω is the angular frequency and the minimum in loss modulus (G′′) with ω. The effective noise temperature, x decreases and approaches 1 with the increase in the TiO2 nanoparticle ? from 0.023–0.035, is indicative of an increase in the glassy dynamics. Through the polarized light microscopy and differential scanning calorimetry experiments, we propose that the progressive addition of TiO2 nanoparticles introduces a quenched random disorder (QRD) in the NLC medium which disturbs the nematic order. This results in metastable TiO2/MBBA NLC suspensions in which NLC domains get confined in the network of flocs of TiO2 nanoparticles. We also show that the salient rheological signatures of soft glassy rheology develop only in the presence of NLC MBBA and are absent in the isotropic phase of MBBA.  相似文献   

4.
The y-nonlocal Davey–Stewartson II equation is an extension of the usual DS II equation involving a partially parity-time-symmetric potential only with respect to the spatial variable y. By using the Hirota bilinear method, families of n-order rational solutions are obtained, which include lumps in the (xy)-plane and the (yt)-plane, growing-and-decaying line waves in the (xt)-plane, and hybrid solutions of interacting line rogue waves and lumps in the (xy)-plane.  相似文献   

5.
We consider the asymptotic behavior of solutions of systems of inviscid or viscous conservation laws in one or several space variables, which are almost periodic in the space variables in a generalized sense introduced by Stepanoff and Wiener, which extends the original one of H. Bohr. We prove that if u(x,t) is such a solution whose inclusion intervals at time t, with respect to ?>0, satisfy l epsiv;(t)/t→0 as t→∞, and such that the scaling sequence u T (x,t)=u(T x,T t) is pre-compact as t→∞ in L loc 1(? d +1 +, then u(x,t) decays to its mean value \(\), which is independent of t, as t→∞. The decay considered here is in L 1 loc of the variable ξ≡x/t, which implies, as we show, that \(\) as t→∞, where M x denotes taking the mean value with respect to x. In many cases we show that, if the initial data are almost periodic in the generalized sense, then so also are the solutions. We also show, in these cases, how to reduce the condition on the growth of the inclusion intervals l ?(t) with t, as t→∞, for fixed ? > 0, to a condition on the growth of l ?(0) with ?, as ?→ 0, which amounts to imposing restrictions only on the initial data. We show with a simple example the existence of almost periodic (non-periodic) functions whose inclusion intervals satisfy any prescribed growth condition as ?→ 0. The applications given here include inviscid and viscous scalar conservation laws in several space variables, some inviscid systems in chromatography and isentropic gas dynamics, as well as many viscous 2 × 2 systems such as those of nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial viscosity, among others. In the case of the inviscid scalar equations and chromatography systems, the class of initial data for which decay results are proved includes, in particular, the L generalized limit periodic functions. Our procedures can be easily adapted to provide similar results for semilinear and kinetic relaxations of systems of conservation laws.  相似文献   

6.
We focus here on the analysis of the regularity or singularity of solutions Ω 0 to shape optimization problems among convex planar sets, namely:
$J(\Omega_{0})={\rm min} \{J(\Omega), \Omega \quad {\rm convex},\Omega \in \mathcal{S}_{\rm ad}\},$
where \({\mathcal{S}_{\rm ad}}\) is a set of 2-dimensional admissible shapes and \({J:\mathcal{S}_{\rm ad}\rightarrow\mathbb{R}}\) is a shape functional. Our main goal is to obtain qualitative properties of these optimal shapes by using first and second order optimality conditions, including the infinite dimensional Lagrange multiplier due to the convexity constraint. We prove two types of results:
  1. i)
    under a suitable convexity property of the functional J, we prove that Ω 0 is a W 2,p -set, \({p\in[1, \infty]}\). This result applies, for instance, with p = ∞ when the shape functional can be written as J(Ω) = R(Ω) + P(Ω), where R(Ω) = F(|Ω|, E f (Ω), λ1(Ω)) involves the area |Ω|, the Dirichlet energy E f (Ω) or the first eigenvalue of the Laplace–Dirichlet operator λ1(Ω), and P(Ω) is the perimeter of Ω;
     
  1. ii)
    under a suitable concavity assumption on the functional J, we prove that Ω 0 is a polygon. This result applies, for instance, when the functional is now written as J(Ω) = R(Ω) ? P(Ω), with the same notations as above.
     
  相似文献   

7.
The existing theories of finite-time stability depend on a prescribed bound on initial disturbances and a prescribed threshold for allowable responses. It remains a challenge to identify the critical value of loading parameter for finite time instability observed in experiments without the need of specifying any prescribed threshold for allowable responses. Based on an energy balance analysis of a simple dynamic system, this paper proposes a general criterion for finite time stability which indicates that finite time stability of a linear dynamic system with constant coefficients during a given time interval [0, t f ] is guaranteed provided the product of its maximum growth rate (determined by the maximum eigen-root p1 >0) and the duration t f does not exceed 2, i.e., p1t f <2. The proposed criterion (p1t f =2) is applied to several problems of impacted buckling of elastic columns: (i) an elastic column impacted by a striking mass, (ii) longitudinal impact of an elastic column on a rigid wall, and (iii) an elastic column compressed at a constant speed (“Hoff problem”), in which the time-varying axial force is replaced approximately by its average value over the time duration. Comparison of critical parameters predicted by the proposed criterion with available experimental and simulation data shows that the proposed criterion is in robust reasonable agreement with the known data, which suggests that the proposed simple criterion (p1t f =2) can be used to estimate critical parameters for finite time stability of dynamic systems governed by linear equations with constant coefficients.  相似文献   

8.
The long-time asymptotics is analyzed for all finite energy solutions to a model\(\mathbf{U}(1)\)-invariant nonlinear Klein–Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as t→ ± ∞ to the set of all “nonlinear eigenfunctions” of the form ψ(x)e?iω t. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation.We justify this mechanism by the following novel strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time spectrum in the spectral gap [ ? m,m] and satisfies the original equation. This equation implies the key spectral inclusion for spectrum of the nonlinear term. Then the application of the Titchmarsh convolution theorem reduces the spectrum of each omega-limit trajectory to a single harmonic \(\omega\in[-m,m]\).The research is inspired by Bohr’s postulate on quantum transitions and Schrödinger’s identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled\(\mathbf{U}(1)\)-invariant Maxwell–Schrödinger and Maxwell–Dirac equations.  相似文献   

9.
Any classical solution of the two-dimensional incompressible Euler equation is global in time. However, it remains an outstanding open problem whether classical solutions of the surface quasi-geostrophic (SQG) equation preserve their regularity for all time. This paper studies solutions of a family of active scalar equations in which each component u j of the velocity field u is determined by the scalar θ through \({u_j =\mathcal{R}\Lambda^{-1}P(\Lambda) \theta}\) , where \({\mathcal{R}}\) is a Riesz transform and Λ = (?Δ)1/2. The two-dimensional Euler vorticity equation corresponds to the special case P(Λ) = I while the SQG equation corresponds to the case P(Λ) = Λ. We develop tools to bound \({\|\nabla u||_{L^\infty}}\) for a general class of operators P and establish the global regularity for the Loglog-Euler equation for which P(Λ) = (log(I + log(I ? Δ))) γ with 0 ≦ γ ≦ 1. In addition, a regularity criterion for the model corresponding to P(Λ) = Λ β with 0 ≦ β ≦ 1 is also obtained.  相似文献   

10.
The influences of fuel Lewis number Le F on localised forced ignition of inhomogeneous mixtures are analysed using three-dimensional compressible Direct Numerical Simulations (DNS) of turbulent mixing layers for Le F  = 0.8, 1.0 and 1.2 and a range of different root-mean-square turbulent velocity fluctuation u′ values. For all Le F cases a tribrachial flame has been observed in case of successful ignition. However, the lean premixed branch tends to merge with the diffusion flame on the stoichiometric mixture fraction isosurface at later stages of the flame evolution. It has been observed that the maximum values of temperature and reaction rate increase with decreasing Le F during the period of external energy addition. Moreover, Le F is found to have a significant effect on the behaviours of mean temperature and fuel reaction rate magnitude conditional on mixture fraction values. It is also found that reaction rate and mixture fraction gradient magnitude \(\vert \nabla \xi \vert \) are negatively correlated at the most reactive region for all values of Le F explored. The probability of finding high values of \(\vert \nabla \xi \vert \) increases with increasing Le F . For a given value of u′, the extent of burning decreases with increasing Le F . A moderate increase in u′ gives rise to an increase in the extent of burning for Le F  = 0.8 and 1.0, which starts to decrease with further increases in u′. For Le F  = 1.2, the extent of burning decreases monotonically with increasing u′. The extent of edge flame propagation on the stoichiometric mixture fraction ξ = ξ st isosurface is characterised by the probability of finding burned gas on this isosurface, which decreases with increasing u′ and Le F . It has been found that it is easier to obtain self-sustained combustion following localised forced ignition in case of inhomogeneous mixtures than that in the case of homogeneous mixtures with the same energy input, energy deposition duration when the ignition centre is placed at the stoichiometric mixture. The difficultly to sustain combustion unaided by external energy addition in homogeneous mixture is particularly prevalent in the case of Le F  = 1.2.  相似文献   

11.
For the system
$-\Delta U_i+ U_i=U_i^3-\beta U_i\sum_{j\neq i}U_j^2,\quad i=1,\dots,k,$
(with k ≧ 3), we prove the existence for β large of positive radial solutions on \({\mathbb R^N}\) . We show that as β →  + ∞, the profile of each component U i separates, in many pulses, from the others. Moreover, we can prescribe the location of such pulses in terms of the oscillations of the changing-sign solutions of the scalar equation  ? ΔW  +  W  =  W3. Within an Hartree–Fock approximation, this provides a theoretical indication of phase separation into many nodal domains for the k-mixtures of Bose–Einstein condensates.
  相似文献   

12.
We report on the interplay between creep and residual stresses in a carbopol microgel. When a constant shear stress σ is applied below the yield stress σ y, the strain is shown to increase as a power law of time, γ(t) = γ 0 + (t/τ) α , with an exponent α = 0.39 ± 0.04 that is strongly reminiscent of Andrade creep in hard solids. For applied shear stresses lower than some typical value σ c ? 0.2σ y, the microgel experiences a more complex, anomalous creep behavior, characterized by an initial decrease of the strain, that we attribute to the existence of residual stresses of the order of σ c that persist after a rest time under a zero shear rate following preshear. The influence of gel concentration on creep and residual stresses are investigated as well as possible aging effects. We discuss our results in light of previous works on colloidal glasses and other soft glassy systems.  相似文献   

13.
It has been long observed that cumbersome parameters are required for the traditional viscoelastic models to describe complex rheological behaviors. Inspired by the relationship between normal and anomalous diffusions, this paper tentatively employs t α to replace t, called as the scaling transformation, in the traditional creep compliance and relaxation modulus. With this methodology, the relaxation modulus is found to agree with the well-known Kohlrausch-Williams-Watts (KWW) stretched exponential function. The fitting results confirm that the proposed models accurately characterize rheological behaviors only with one more parameter α. Moreover, it is noted that the present formulations are directly related to the fractal derivative viscoelastic models and the index α is actually the order of the fractal derivative.  相似文献   

14.
In the present paper, we use the conformal mapping z/c = ζ?2a sin ζ (a, c?const, ζ = u + iv) of the strip {|v| ≤ v 0, |u| < ∞} onto the domain D, which is a strip with symmetric periodic cuts. For the domain D, in the orthogonal system of isometric coordinates u, v, we solve the plane elasticity problem. We seek the biharmonic function in the form F = C ψ 0 + S ψ*0 + x(C ψ 1 ? S ψ 2) + y(C ψ 2 + S ψ 1), where C(v) and S(v) are the operator functions described in [1] and ψ 0(u), …, ψ 2(u) are the desired functions. The boundary conditions for the function F posed for v = ±v 0 are equivalent to two operator equations for ψ 1(u) and ψ 2(u) and to two ordinary differential equations of first order for ψ 0(u) and ψ*0(u) [2]. By finding the functions ψ j (u) in the form of trigonometric series with indeterminate coefficients and by solving the operator equations, we obtain infinite systems of linear equations for the unknown coefficients. We present an efficient method for solving these systems, which is based on studying stable recursive relations. In the present paper, we give an example of analysis of a specific strip (a = 1/4, v 0 = 1) loaded on the boundary v = v 0 by a normal load of intensity p. We find the particular solutions corresponding to the extension of the strip by the longitudinal force X and to the transverse and pure bending of the strip due to the transverse force Y and the constant moment M , respectively. We also present the graphs of normal and tangential stresses in the transverse cross-section x = 0 and study the stress concentration effect near the cut bottom.  相似文献   

15.
On the basis of an asymptotic analysis of the Navier-Stokes system of equations for large Reynolds numbers (Re → ∞), the plane incompressible fluid flow near a surface having a convex corner with a small angle 2θ* is investigated. It is shown that for θ* = O(Re?1/4), in addition to the known solution that describes a separated flow completely localized in a thin “viscous” sublayer of the interaction region near the corner point, another solution corresponding to a flow with a developed separation zone is possible. For θ 0 = Re1/4 θ* = O(1), the longitudinal dimension of this zone varies from finite values up to values of the order of Re?3/8. The nonuniqueness of the solution is established on a certain range of variation of the parameter θ 0. The dependence of the drag coefficient on the angle θ* is found.  相似文献   

16.
For high-molecular-weight (M) ring polymers with low contamination of linear chains, recent viscoelastic tests revealed broad terminal relaxation associated with no clear entanglement plateau. This relaxation behavior is qualitatively similar to that deduced from molecular models (double-folded lattice-animal model and the fractal loopy globule model) for entangled ring polymers, but quantitatively important differences are also noted: For example, the full terminal relaxation of those polymers is slower than the model prediction. This study re-examined the viscoelastic data of entangled high-M ring polystyrene (PS) samples (coded as R-240; M = 244×103) specifically for two points: the purity of the ring samples after the viscoelastic tests and the molecular origin of the stress. For the first point, the R-240 samples contaminated with linear chains at low but different levels were prepared by tuning either the purification efficiency or the retention time of the sample at high temperature (T) before/during the viscoelastic test. The fraction w L of the linear contaminant, determined after the viscoelastic measurement, was ranging from 0.7 to 4.9%, and the extrapolation of the modulus data to w L = 0 gave the data for the ideally pure ring melt. This pure ring melt exhibited broad terminal relaxation that started faster but completed slower compared to the model prediction, indicating that the ring relaxation is not well described by the current model(s) even in the absence of linear contaminant. For the second point, dynamic birefringence measurements were conducted for the R-240 samples with w L = 4.6 and 1.0%. These samples obeyed the stress-optical rule, and their stress-optical coefficient was indistinguishable from that for linear PS samples, revealing that the stress of the ring PS chains reflects the orientational anisotropy of the chains (as is the case also for linear chains). The relaxation behavior of pure ring PS melt is discussed on the basis of these findings, with the focus being placed on the ring-ring threading not considered in the models.  相似文献   

17.
The development of the thermo-viscous fingering instability of miscible displacements in homogeneous porous media is examined. In this first part of the study dealing with stability analysis, the basic equations and the parameters governing the problem in a rectilinear geometry are developed. An exponential dependence of viscosity on temperature and concentration is represented by two parameters, thermal mobility ratio β T and a solutal mobility ratio β C , respectively. Other parameters involved are the Lewis number Le and a thermal-lag coefficient λ. The governing equations are linearized and solved to obtain instability characteristics using either a quasi-steady-state approximation (QSSA) or initial value calculations (IVC). Exact analytical solutions are also obtained for very weakly diffusing systems. Using the QSSA approach, it was found that an increase in thermal mobility ratio β T is seen to enhance the instability for fixed β C , Le and λ. For fixed β C and β T , a decrease in the thermal-lag coefficient and/or an increase in the Lewis number always decrease the instability. Moreover, strong thermal diffusion at large Le as well as enhanced redistribution of heat between the solid and fluid phases at small λ is seen to alleviate the destabilizing effects of positive β T . Consequently, the instability gets strictly dominated by the solutal front. The linear stability analysis using IVC approach leads to conclusions similar to the QSSA approach except for the case of large Le and unity λ flow where the instability is seen to get even less pronounced than in the case of a reference isothermal flow of the same β C , but β T  = 0. At practically, small value of λ, however, the instability ultimately approaches that due to β C only.  相似文献   

18.
In the first part of this paper, we considered the exact statement of the plane elasticity problem in displacements for strips made of various materials (problem A, an isotropic material; problem B, an orthotropic material with 2G 12 < √E 1 E 2; problem C, an orthotropic material with 2G 12 > √E 1 E 2). Further, we stated and solved the boundary layer problem (the problem on a solution decaying away from the boundary) for a sandwich strip of regular structure consisting of isotropic layers (problem AA). In the present paper, we use the solution of the plane problem to consider the problem for sandwich strips of regular structure with isotropic face layers and orthotropic filler (problem AB).  相似文献   

19.
We consider a Cauchy problem for a parabolic-elliptic system of drift–diffusion type. The problem is formally of the form
$ U_t = \nabla \cdot (\nabla U-U \nabla (-\Delta)^{-1}U). $
This system describes a mass-conserving aggregation phenomenon including gravitational collapse and bacterial chemotaxis. Our concern is the asymptotic behavior of blowup solutions when the blowup is type I, in the sense that its blowup rate is the same as the corresponding ordinary differential equation y t  = y 2 (up to a multiple constant). It is shown that all type I blowup is asymptotically (backward) self-similar, provided that the solution is radial, nonnegative when the blowup set is a singleton and the space dimension is greater than or equal to three.
  相似文献   

20.
Zeins, storage proteins from maize, are suitable for making biobased thermoplastic materials. The rheological behavior of a commercial zein plasticized with 20 w% glycerol was studied in the molten state by steady-state flow experiments in extrusion conditions and oscillatory rheometry. For low residence times, a shear-thinning viscoelastic behavior was observed, with G″ exceeding G′. After 300 s at 130 °C, the complex viscosity |η ?|?=?7?×?103 ω ?0.46 was found to be similar to that of thermoplastic polymer melts used in fused deposition modeling. However, the ratio between the exponents of the power laws describing G′(ω) and G″(ω) did not meet the typical value of 2 for entangled polymer melts. Moreover, for longer residence times, the viscosity increased and a gelation phenomenon was observed with a crossing over of G′(ω) and G″(ω). Gel times ranged from 6000 s at 120 °C to 1700 s at 150 °C. The evolution of the macromolecular structure assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance size exclusion chromatography suggested that this gelation phenomenon involves various types of covalent and non-covalent cross-links. Disulfide bonds played a significant role in gelation kinetics despite a very low cysteine residue content in the protein primary structure (about 1 mol%). These results suggested that plasticized zeins initially behave like a low-viscosity non-entangled polymer melt, before cross-linking progressively led to a continuous network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号