首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inviscid Models Generalizing the Two-dimensional Euler and the Surface Quasi-geostrophic Equations
Authors:Dongho Chae  Peter Constantin  Jiahong Wu
Institution:1.Department of Mathematics,Sungkyunkwan University,Suwon,Korea;2.Department of Mathematics,University of Chicago,Chicago,USA;3.Department of Mathematics,Oklahoma State University,Stillwater,USA
Abstract:Any classical solution of the two-dimensional incompressible Euler equation is global in time. However, it remains an outstanding open problem whether classical solutions of the surface quasi-geostrophic (SQG) equation preserve their regularity for all time. This paper studies solutions of a family of active scalar equations in which each component u j of the velocity field u is determined by the scalar θ through \({u_j =\mathcal{R}\Lambda^{-1}P(\Lambda) \theta}\) , where \({\mathcal{R}}\) is a Riesz transform and Λ = (?Δ)1/2. The two-dimensional Euler vorticity equation corresponds to the special case P(Λ) = I while the SQG equation corresponds to the case P(Λ) = Λ. We develop tools to bound \({\|\nabla u||_{L^\infty}}\) for a general class of operators P and establish the global regularity for the Loglog-Euler equation for which P(Λ) = (log(I + log(I ? Δ))) γ with 0 ≦ γ ≦ 1. In addition, a regularity criterion for the model corresponding to P(Λ) = Λ β with 0 ≦ β ≦ 1 is also obtained.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号