首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Blends of a tetrafunctional epoxy resin, tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM), and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 3,3′‐diaminodiphenyl sulfone (DDS) as curing agent. The phase behavior and morphology of the DDS‐cured epoxy/HBP blends with HBP content up to 30 phr were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The phase behavior and morphology of the DDS‐cured epoxy/HBP blends were observed to be dependent on the blend composition. Blends with HBP content from 10 to 30 phr, show a particulate morphology where discrete HBP‐rich particles are dispersed in the continuous cured epoxy‐rich matrix. The cured blends with 15 and 20 phr exhibit a bimodal particle size distribution whereas the cured blend with 30 phr HBP demonstrates a monomodal particle size distribution. Mechanical measurements show that at a concentration range of 0–30 phr addition, the HBP is able to almost double the fracture toughness of the unmodified TGDDM epoxy resin. FTIR displays the formation of hydrogen bonding between the epoxy network and the HBP modifier. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 417–424, 2010  相似文献   

2.
Photoinitiated cationic polymerization of mono‐ and bifunctional epoxy monomers, namely cyclohexeneoxide (CHO), 4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexanecarboxylate (EEC), respectively by using sulphonium salts in the presence of hydroxylbutyl vinyl ether (HBVE) was studied. The real‐time FTIR spectroscopic, gel content determination, and thermal characterization studies revealed that both hydroxyl and vinyl ether functionalities of HBVE take part in the polymerization. During the polymerization, HBVE has the ability to react via both active chain end (ACE) and activated monomer mechanisms through its hydroxyl and vinyl ether functionalities, respectively. Thus, more efficient curing was observed with the addition of HBVE into EEC‐containing formulations. It was also demonstrated that HBVE is effective in facilitating the photoinduced crosslinking of monofunctional epoxy monomer, CHO in the absence of a conventional crosslinker. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4914–4920, 2007  相似文献   

3.
The effects of chain transfer agents (CTA) on cationic ring‐opening polymerization of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (EEC) were explored. EEC was polymerized in the presence of various CTAs, and epoxide conversions monitored via Raman spectroscopy. Polymer films were prepared and analyzed by dynamic mechanical analysis. Many of the organic alcohols studied greatly enhanced epoxide polymerization rates and conversion levels. The gel fraction of polymer specimens decreased rapidly with increasing amounts of octanol (gel fraction >90% up to 0.3 equiv OH) but remained high with increasing amounts of 1,2‐propanediol (gel fraction >90% up to 0.6 equiv OH). Increasing the size of primary alcohols had little effect on the polymerization rates and conversions. The polymerization rate decreased with increasing alcohol substitution (1°>2°>3°). Acidic alcohols had very low impact on conversion and polymerization rates relative to the neat epoxy resin. The glass transition temperature was inversely related to the size and amount of CTA. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
This article describes the reaction of amino resins with functional molecules using the azide/alkyne‐“click”‐reaction, opening a simple chemical modification of amino resins under aqueous conditions. Alkyne‐modified melamine‐formaldehyde resins are prepared via a direct cocondensation approach using propargylic alcohol (21.6–86.3 mmol) as additive. Subsequently, alkyne‐modified mono‐, bi‐, and trinuclear melamine‐species are identified via LC‐ESI‐TOF methods proving the covalent incorporation of alkyne‐moieties in amounts of up to 3.9 mol %. Subsequent modification of the alkyne‐modified resins was accomplished by reaction of functional azides (octyl azide (1), (azidomethyl)benzene (2), 1‐(6‐azidohexyl) thymine (3), and 4‐azido‐N‐(2,2,6,6‐tetramethylpiperidin‐4‐yl)benzamide (4)) with Cu(I)Br and DIPEA as a base. The formation of triazolyl‐modified MF‐resins was proven by LC‐ESI‐TOF methods, indicating the successful covalent modification of the amino resin with the azides 1 – 4 . © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

6.
Thermosetting blends of a biodegradable poly(ethylene glycol)‐type epoxy resin (PEG‐ER) and poly(?‐caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass‐transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG‐ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG‐ER blends, that is, a PCL‐rich phase and a PEG‐ER crosslinked phase composed of an MAH‐cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase‐separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG‐ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2833–2843, 2004  相似文献   

7.
A new vinyl azide monomer, 2‐chlorallyl azide (CAA), has been synthesized from commercially available reagent in one step. The reversible addition fragmentation chain transfer (RAFT) copolymerization of CAA with methyl acrylate (MA) was carried out at room temperature using a redox initiator, benzoyl peroxide (BPO)/N,N‐dimethylaniline (DMA), in the presence of benzyl 1H‐imidazole‐1‐carbodithioate (BICDT). The polymerization results showed that the process bears the characteristics of controlled/living radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow, and a linear relationship existing between ln([M]0/[M]) and the polymerization time. Chain extension polymerization was performed successfully to prepare block copolymer. Furthermore, the azide copolymers were functionalized by CuI‐catalyzed “click” reaction with alkyne‐containing poly(ethylene glycol) (PEG) to yield graft copolymers with hydrophilic PEG side chains. Surface modification of the glass sheet was successfully achieved via the crosslinking reaction of the azide copolymer under UV irradiation at ambient temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1348–1356, 2010  相似文献   

8.
A new hyperbranched‐linear‐hyperbranched polymer was prepared in a one pot process by reaction of 4,4‐bis(4‐hydroxyphenyl)valeric acid and poly(ethylene glycol) (HPH). After characterization by 1H and 13C NMR, SEC, DSC, and TGA, this polymer was used, in proportions of 5, 10, and 15 phr, as a chemical modifier in the UV and thermal cationic curing of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexyl carboxylate epoxy resin. The curing process was studied by calorimetry, demonstrating the accelerating effect of the hydroxyl groups present in HPH's structure. The morphology of the resulting thermosets depended on the curing system used, as demonstrated by FE‐SEM microscopy, but in both cases phase separation occurred. Thermosets obtained by thermal curing presented lower thermal stability than UV‐cured materials. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Liquid‐crystalline (LC) epoxy resins were cured at different temperatures to obtain polydomain LC phase–cured resins. The cured resins had polydomain structures with a nematic LC phase and their domain diameters differed depending on the curing temperatures. The relationship between the domain diameter and fracture toughness of the diglycidyl ether of terephthalylidene‐bis‐(4‐amino‐3‐methylphenol) (DGETAM)/m‐phenylenediamine (m‐PDA) systems with the nematic phase and the previously reported smectic LC phase structures was investigated. It was clarified that the highly ordered LC structure (smectic phase) in each domain could improve the fracture toughness. In addition, the changes in the network orientation of the DGETAM/m‐PDA systems were evaluated by a mapping of the microscopic infrared dichroism in the fracture process and their toughening mechanism was suggested. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
Hydrogen bonding interactions, phase behavior, crystallization, and surface hydrophobicity in nanostructured blend of bisphenol A‐type epoxy resin (ER), for example, diglycidyl ether of bisphenol A (DGEBA) and poly(ε‐caprolactone)‐block‐poly(dimethyl siloxane)‐block‐poly(ε‐caprolactone) (PCL–PDMS–PCL) triblock copolymer were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, transmission electron microscopy, small‐angle X‐ray scattering, and contact angle measurements. The PCL–PDMS–PCL triblock copolymer consisted of two epoxy‐miscible PCL blocks and an epoxy‐immiscible PDMS block. The cured ER/PCL–PDMS–PCL blends showed composition‐dependent nanostructures from spherical and worm‐like microdomains to lamellar morphology. FTIR study revealed the existence of hydrogen bonding interactions between the PCL blocks and the cured epoxy, which was responsible for their miscibility. The overall crystallization rate of the PCL blocks in the blend decreased remarkably with increasing ER content, whereas the melting point was slightly depressed in the blends. The surface hydrophobicity of the cured ER increased upon addition of the block copolymer, whereas the surface free energy (γs) values decreased with increasing block copolymer concentration. The hydrophilicity of the epoxy could be reduced through blending with the PCL–PDMS–PCL block copolymer that contained a hydrophobic PDMS block. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 790–800, 2010  相似文献   

11.
A novel flame‐retardant epoxy resin, (4‐diethoxyphosphoryloxyphenoxy)(4‐glycidoxyphenoxy)cyclotriphosphazene (PPCTP), was prepared by the reaction of epichlorohydrin with (4‐diethoxyphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene and was characterized by Fourier transform infrared, 31P NMR, and 1H NMR analyses. The epoxy resin was further cured with diamine curing agents, 4,4′‐diaminodiphenylmethane (DDM), 4,4′‐diaminodiphenylsulfone (DDS), dicyanodiamide (DICY), and 3,4′‐oxydianiline (ODA), to obtain the corresponding epoxy polymers. The curing reactions of the PPCTP resin with the diamines were studied by differential scanning calorimetry. The reactivities of the four curing agents toward PPCTP were in the following order: DDM > ODA > DICY > DDS. In addition, the thermal properties of the cured epoxy polymers were studied by thermogravimetric analysis, and the flame retardancies were estimated by measurement of the limiting oxygen index (LOI). Compared to a corresponding Epon 828‐based epoxy polymer, the PPCTP‐based epoxy polymers showed lower weight‐loss temperatures, higher char yields, and higher LOI values, indicating that the epoxy resin prepared could be useful as a flame retardant. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 972–981, 2000  相似文献   

12.
Amphiphilic block copolymers composed of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic poly(glycidyl methacrylate) (PGMA) block were synthesized through cationic ring‐opening polymerization with PEG as the precursor. The model reactions indicated that the reactivity of the epoxy groups was higher than that of the double bonds in the bifunctional monomer glycidyl methacrylate (GMA) under the cationic polymerization conditions. Through the control of the reaction time in the synthesis of block copolymer PEG‐b‐PGMA, a linear GMA block was obtained through the ring‐opening polymerization of epoxy groups, whereas the double bond in GMA remained unreacted. The results showed that the molecular weight of the PEG precursor had little influence on the grafting of GMA, and the PGMA blocks almost kept the same length, despite the difference of the PEG blocks. In addition, the PGMA blocks only consisted of several GMA units. The obtained amphiphilic PEG‐b‐PGMA block copolymers could form polymeric core–shell micelles by direct molecular self‐assembly in water. The crosslinking of the PGMA core of the PEG‐b‐PGMA micelles, induced by ultraviolet radiation and heat instead of crosslinking agents, greatly increased the stability of the micelles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2038–2047, 2005  相似文献   

13.
Due to the longevity of the cationic active centers, cationic ring‐opening photopolymerization can continue after illumination ceases. In addition, substantial reactivity enhancement for epoxides is realized through copolymerization with oxetanes. Here, the separate reactions of epoxide and oxetane moieties were resolved during illumination and subsequent dark cure via real‐time Raman spectroscopy. Using oxetane additives, reactivity and conversion of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (EEC) were improved during illumination and subsequent dark cure through modulation of the initial formulation viscosity and selection of the oxetane secondary functional groups. The largest enhancement in reactivity occurred with secondary groups comprising either aliphatic chains with their flexibility or hydroxyls with their chain‐transfer capacity. In contrast, oxetanes containing UV‐absorbing phenyl rings reduced the initiation efficiency, and difunctional oxetanes suppressed overall conversion through additional crosslinking. Although bulk conversion was directly related to initial formulation viscosity, the impact of the oxetane secondary functional groups was greater. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1436–1445  相似文献   

14.
The surface of carbon black (CB) nanoparticles was functionalized with poly(vinylidene fluoride) (PVDF) either by trapping of macroradicals or by cycloaddition. PVDF with two iodine end groups (I‐PVDF‐I) obtained from iodine transfer polymerization in supercritical CO2 was heated in the presence of CB and the C? I bond was cleaved resulting in a reaction between the macroradical and the CB surface. To allow for cycloaddition of PVDF to the CB surface for a number of polymers, the iodine end groups were replaced by azide end groups. In addition, microwave irradiation was applied to the functionalization. The influence of temperature, time, polymer concentration, and polymer molar mass on the functionalization reaction was examined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
A facile way for the synthesis of hyperbranched poly(4‐chloromethylstyrene) [P(4‐CMS)] with adjustable molar mass by classic atom transfer radical polymerization (ATRP) and mechanistically similar procedures is presented. Subsequently, the chlorine functional groups have been modified to obtain polymers with different polarities. On the one hand, the polymer was end‐capped with unpolar groups (e.g., methyl, phenol ether) to obtain chemically inert substances. On the other hand, more complex functional groups have been introduced through azide groups by 1,3‐dipolar cycloaddition reaction (“click chemistry”). Furthermore, a method for the introduction of ester groups under mild conditions using cesium carboxylates is presented, which also allowed the preparation of so‐called hyperstars by attaching COOH functionalized polystyrene chains onto the P(4‐CMS) as core molecule. All these reactions were carried out in high or very high yields. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2224–2235, 2010  相似文献   

16.
Interpenetrating polymer network (IPN) hydrogels have been fabricated through a facile one‐pot approach from tetra/bifunctional telechelic macromonomers with epoxy, amine, azide, and alkyne groups by orthogonal double click reactions: epoxy‐amine reaction and copper‐catalyzed azide‐alkyne cycloaddition. Both the crosslinked networks are simultaneously constructed in water from the biocompatible poly (ethylene glycol)‐based macromonomers. The crosslinking density of each network was finely tuned by the macromonomer structure, permitting control of network molecular weights between crosslinks of the final gels. Compared to corresponding single network gels, the IPN gels containing both tightly and loosely crosslinked networks exhibited superior mechanical properties with shear moduli above 15 kPa and fracture stresses over 40 MPa. The synthetic versatility of this one‐pot approach will further establish design principles for the next generation of robust hydrogel materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1459–1467  相似文献   

17.
Well‐defined H‐shaped pentablock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM), poly(N,N‐dimethylaminoethylacrylamide) (PDMAEMA), and poly(ethylene glycol) (PEG) with the chain architecture of (A/B)‐b‐C‐b‐(A/B) were synthesized by the combination of single‐electron‐transfer living radical polymerization, atom‐transfer radical polymerization, and click chemistry. Single‐electron‐transfer living radical polymerization of NIPAM using α,ω azide‐capped PEG macroinitiator resulted in PNIPAM‐b‐PEG‐b‐PNIPAM with azide groups at the block joints. Atom‐transfer radical polymerization of DMAEMA initiated by propargyl 2‐chloropropionate gave out α‐capped alkyne‐PDMAEMA. The H‐shaped copolymers were finally obtained by the click reaction between PNIPAM‐b‐PEG‐b‐PNIPAM and alkyne‐PDMAEMA. These copolymers were used to prepare stable colloidal gold nanoparticles (GNPs) in aqueous solution without any external reducing agent. The formation of GNPs was affected by the length of PDMAEMA block, the feed ratio of the copolymer to HAuCl4, and the pH value. The surface plasmon absorbance of these obtained GNPs also exhibited pH and thermal dependence because of the existence of PNIAPM and PDAMEMA blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Conductive polymer (poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) is an attractive platform for the design of flexible electronic, optoelectronic, and (bio)sensor devices. Practical application of PEDOT:PSS often requires an incorporation of specific molecules or moieties for tailoring of its physical–chemical properties. In this article, a method for covalent modification of PEDOT:PSS using arenediazonium tosylates was proposed. The procedure includes two steps: chemisorption of diazo‐cations on the PEDOT:PSS surface followed by thermal decomposition of the diazonium salt and the covalent bond formation. Structural and surface properties of the samples were evaluated by XPS, SEM‐EDX, AFM, goniometry, and a range of electric and optical measurements. The developed modification procedure enables tuning of the PEDOT:PSS surface properties such as conductivity and optical absorption. The possibility to introduce various organic functional groups (from hydrophilic to hydrophobic) and to create new groups for further functionalization makes the developed procedure multipurpose. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 378–387  相似文献   

19.
Polyurethane prepolymers are widely used in the reactive hot melt adhesives and moisture‐cured coatings. The chemically crosslinked moisture‐cured formulation based on PEG‐1000 and isophorone diisocyanate was prepared with NCO/OH ratio of 1.6:1.0. Trimethylol propane was used as a crosslinking agent. The excess isocyanate of the prepolymer was chain extended in the ratio of 2:1 (NCO/OH) with different aliphatic diols, and 4:1 with different aromatic diamines. The polymer network maturation during moisture cure was followed by dynamic mechanical thermal analyzer (DMTA) instrument. The thermal and dynamic mechanical properties of the crosslinked polymers were evaluated using thermogravimetric analysis, differential scanning calorimetric analysis and DMTA. Surface properties were evaluated through angle‐resolved X‐ray photoelectron spectroscopy. The present article discusses the physical properties of moisture‐cured polyurethane‐urea (MCPU) containing chemical crosslinks in the hard segment. The complete moisture‐cured polymers showed amorous results toward room temperature modulus, tensile strength, hardness, thermal stability, and transparency. The surface properties showed the enrichment of soft segments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 102–118, 2006  相似文献   

20.
New fluorinated, polyfunctional propenyl ether functionalized resins were synthesized, and their behavior in cationic photopolymerization was investigated. The photopolymerization proceeded efficiently with a high double‐bond conversion (>90%), giving rise to UV‐cured coatings characterized by low glass‐transition temperatures (?33 °C ≤ glass‐transition temperature ≤ ?15 °C) and hydrophobic surface properties. A fluorinated additive was also employed as a reactive additive in the cationic photopolymerization of trimethylolpropane tripropenyl ether, increasing the double‐bond conversion, polymer network flexibility, thermal stability, and surface hydrophobicity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6943–6951, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号