首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Amino acids are the building blocks of proteins and the analysis of their 13C abundances is greatly simplified by the use of liquid chromatography (LC) systems coupled with isotope ratio mass spectrometry (IRMS) compared with gas chromatography (GC)‐based methods. To date, various cation exchange chromatography columns have been employed for amino acid separation. Here, we report strong anion exchange chromatography (SAX) coupled to IRMS with a Liquiface interface for amino acid δ13C determination. Mixtures of underivatised amino acids (0.1–0.5 mM) and hydrolysates of representative proteins (prawns and bovine serum albumin) were resolved by LC/IRMS using a SAX column and inorganic eluents. Background inorganic carbon content was minimised through careful preparation of alkaline reagents and use of a pre‐injector on‐line carbonate removal device. SAX chromatography completely resolved 11 of the 16 expected protein amino acids following acid hydrolysis in underivatised form. Basic and neutral amino acids were resolved with 35 mM NaOH in isocratic mode. Elution of the aromatic and acidic amino acids required a higher hydroxide concentration (180 mM) and a counterion (NO, 5–25 mM). The total run time was 70 min. The average δ13C precision of baseline‐resolved peaks was 0.75‰ (range 0.04 to 1.06‰). SAX is a viable alternative to cation chromatography, especially where analysis of basic amino acids is important. The technology shows promise for 13C amino acid analysis in ecology, archaeology, forensic science, nutrition and protein metabolism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We have developed a method based on a double labeling with stable isotopes and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses to study amino acid exchange in a symbiotic plant-microbe association. Isotopic precision was studied for 21 standards including 15 amino acid derivatives, three N-protected amino acid methyl esters, three amines and one international standard. High correlations were observed between the δ(13)C and δ(15)N values obtained by GC/C/IRMS and those obtained by an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (R(2) = 0.9868 and 0.9992, respectively). The mean precision measured was 0.04‰ for δ(13)C and 0.28‰ for δ(15)N (n = 15). This method was applied in vivo to the symbiotic relationship between alfalfa (Medicago sativa L.) and N(2)-fixing bacteria. Plants were simultaneously labeled over 10 days with (13)C-depleted CO(2) ((12)CO(2)), which was assimilated through photosynthesis by leaves, and (15)N(2) fixed via nodules. Subsequently, the C and N isotope compositions (i.e. δ(13)C and δ(15)N) of free amino acids were analyzed in leaves and nodules by GC/C/IRMS. The method revealed the pattern of C and N exchange between leaves and nodules, highlighting that γ-aminobutanoic acid and glycine may represent an important form of C transport from leaves to the nodules. The results confirmed the validity, reliability and accuracy of the method for assessing C and N fluxes between plants and symbiotic bacteria and support the use of this technique in a broad range of metabolic and fluxomic studies.  相似文献   

3.
High‐precision on‐line procedure for measurement of calcium isotopic ratio by coupling ion chromatography to multicollector inductively coupled plasma mass spectrometry was developed. Calcium separation from the sample matrix was achieved on an ion chromatography column—IonPac CS16—ID 3 mm connected with CERS 500 2 mm suppressor and followed by multicollector inductively coupled plasma mass spectrometry calcium isotopic ratio determination. Dry plasma mode was used with Aridus II desolvation system. To sustained samples with high level of total dissolved salts as well as account capacity of applied analytical column, the method has been optimized regarding calcium isotope ratio measurements with low‐resolution mass spectrometry. Mass discrimination and instrument drift were corrected by sample‐standard bracketing method using the 44Ca/42Ca isotope ratio of SRM 915a as a standard. Good accuracy and reasonable precision of calcium isotope ratio (generally 0.20‰ [2SD]) were achieved, which are comparable to off‐line Ca separation and continuous measurement. The reproducibility of the proposed analytical procedure was verified by measuring the SRM 915a standard as a sample randomly over 3 months (n = 56). Applicability of the protocol was demonstrated for matrix‐rich natural water samples, coral samples, and bone standard reference materials.  相似文献   

4.
We describe an automated gas chromatography/isotope-ratio mass spectrometry (GC/IRMS) method for the determination of the (18)O and position-resolved (15)N content of nitrous oxide at natural isotope abundance. The position information is obtained from successive measurement of the isotopic composition of the N(2)O(+) ion at m/z 44, 45, 46 and the NO(+) fragment ion at m/z 30, 31. The fragment ion analysis is complicated by a non-linearity in the mass spectrometer that has to be taken into account. Evaluation of the absolute peak areas allows for a simultaneous determination of the N(2)O mixing ratio for atmospheric samples. Samples with mixing ratios ranging from a few nmol/mol up to the percent level can be analyzed using different sample inlet systems. The high concentration inlet system provides an easy and quick method to carry out various diagnostic tests, in particular to perform realistic linearity tests. A gas chromatographic set-up with a split column and a backflush possibility improves analytical precision and excludes interferences by substances with long retention times from preceding runs. We also describe a new open split interface that uses only a single transfer capillary to the mass spectrometer for sample and reference gas.  相似文献   

5.
Under most physiological conditions, glucose, or carbohydrate (CHO), homeostasis is tightly regulated. In order to mechanistically appraise the origin of circulating glucose (e.g. via either gluconeogenesis, glycogenolysis or oral glucose intake), and its regulation and oxidation, the use of stable isotope tracers is now a well-accepted analytical technique. Methodologically, liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) can replace gas chromatography coupled to combustion-isotope ratio mass spectrometry (GC/C/IRMS) for carrying out compound-specific (13)C isotopic analysis. The LC/IRMS approach is well suited for studying glucose metabolism, since the plasma glucose concentration is relatively high and the glucose can readily undergo chromatography in an aqueous mobile phase. Herewith, we report two main methodological approaches in a single instrument: (1) the ability to measure the isotopic enrichment of plasma glucose to assess the efficacy of CHO-based treatment (cocoa-enriched) during cycling exercise with healthy subjects, and (2) the capacity to carry out bulk isotopic analysis of labeled solutions, which is generally performed with an elemental analyzer coupled to IRMS. For plasma samples measured by LC/IRMS the data show a isotopic precision SD(δ(13)C) and SD(APE) of 0.7 ‰ and 0.001, respectively, with δ(13)C and APE values of -25.48 ‰ and 0.06, respectively, being generated before and after tracer administration. For bulk isotopic measurements, the data show that the presence of organic compounds in the blank slightly affects the δ(13)C values. Despite some analytical limitations, we clearly demonstrate the usefulness of the LC/IRMS especially when (13)C-glucose is required during whole-body human nutritional studies.  相似文献   

6.
Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.  相似文献   

7.
The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C‐isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques the samples must be derivatized prior to analysis, which makes sample preparation more labour‐intensive and increases the uncertainty of the measured isotopic composition. A novel method for the determination of isotopic enrichment of glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been developed. Using this technique, for which hardly any sample preparation is needed, we showed that both the enrichment and the concentration could be measured with very high precision using only 20 µL of plasma. In addition, a comparison with GC/MS and GC/IRMS showed that the best performance was achieved with the LC/IRMS method making it the method of choice for the measurement of 13C‐isotopic enrichment in plasma samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Compound‐specific isotope analysis (CSIA) by liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) has until now been based on ion‐exchange separation. In this work, high‐temperature reversed‐phase liquid chromatography was coupled to, and for the first time carefully evaluated for, isotope ratio mass spectrometry (HT‐LC/IRMS) with four different stationary phases. Under isothermal and temperature gradient conditions, the column bleed of XBridge C18 (up to 180 °C), Acquity C18 (up to 200 °C), Triart C18 (up to 150 °C), and Zirchrom PBD (up to 150 °C) had no influence on the precision and accuracy of δ13C measurements, demonstrating the suitability of these columns for HT‐LC/IRMS analysis. Increasing the temperature during the LC/IRMS analysis of caffeine on two C18 columns was observed to result in shortened analysis time. The detection limit of HT‐RPLC/IRMS obtained for caffeine was 30 mg L–1 (corresponding to 12.4 nmol carbon on‐column). Temperature‐programmed LC/IRMS (i) accomplished complete separation of a mixture of caffeine derivatives and a mixture of phenols and (ii) did not affect the precision and accuracy of δ13C measurements compared with flow injection analysis without a column. With temperature‐programmed LC/IRMS, some compounds that coelute at room temperature could be baseline resolved and analyzed for their individual δ13C values, leading to an important extension of the application range of CSIA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry.  相似文献   

10.
A variable flow "peak trapping" liquid chromatography (LC) interface has been developed for the coupling of nanoscale LC to electrospray ionization mass spectrometry (ESI-MS). The presented peak trapping LC interface allows for the extended analysis time of co-eluting compounds and has been employed for the identification of proteins via tandem mass spectrometry (MS/MS). The variable flow process can be controlled either manually or in a completely automated manner where the mass spectrometer status determines the status of the variable flow interface. When the mass spectrometer operates in MS survey mode, the interface is operated in a so-called "high-flow" mode. Alternatively, the interface is operated in a "low-flow" mode during MS/MS analysis. In the "high-flow" mode of the variable flow process the column flow rate is typically around 200 nL/min, whereas in the "low-flow" mode the column effluent is introduced into the source of the mass spectrometer at 25 nL/min. In addition to the flow reduction during MS/MS analysis, the gradient is paused to preserve the peptide separation on the analytical nanoscale LC column. The performance of the variable flow nanoscale LC/MS/MS interface is demonstrated by the automated analysis of standard peptide mixtures and protein digests utilizing variable flow, data-dependent scanning MS/MS techniques, and automated database searching.  相似文献   

11.
Determination of glutathione kinetics using stable isotopes requires accurate measurement of the tracers and tracees. Previously, the precursor and synthesized product were measured with two separate techniques, liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In order to reduce sample volume and minimize analytical effort we developed a method to simultaneously determine 13C‐glutathione as its dimeric form (GSSG) and its precursor [1‐13C]glycine in a small volume of erythrocytes in one single analysis. After having transformed 13C‐glutathione into its dimeric form GSSG, we determined both the intra‐erythrocytic concentrations and the 13C‐isotopic enrichment of GSSG and glycine in 150 µL of whole blood using liquid chromatography coupled to LC/IRMS. The results show that the concentration (range of µmol/mL) was reliably measured using cycloleucine as internal standard, i.e. with a precision better than 0.1 µmol/mL. The 13C‐isotopic enrichment of GSSG and glycine measured in the same run gave reliable values with excellent precision (standard deviation (sd) <0.3‰) and accuracy (measured between 0 and 5 APE). This novel method opens up a variety of kinetic studies with relatively low dose administration of tracers, reducing the total cost of the study design. In addition, only a minimal sample volume is required, enabling studies even in very small subjects, such as preterm infants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The stable carbon isotope compositions of tetrols, erythritol and threitol were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using four tetrols with various δ13C values derivatized by methylboronic acid, the carbon isotope analysis method achieved excellent reproducibility and high accuracy. There was no carbon isotopic fractionation during the derivatization processes. The differences in the carbon isotopic compositions of methylboronates between the measured and calculated ranged from ?0.20 to 0.12‰, within the specification of the GC/C/IRMS system. It was demonstrated that δ13C values of tetrols could be calculated by a simple mass balance equation between tetrols, methylboronic acid, and methylboronates. The analogous 2‐methyltetrols, marker compounds of photooxidation products of atmospheric isoprene, should have similar behavior using the same derivatization reagent. This method may provide insight on sources and sinks of atmospheric isoprene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The review describes on-line derivatization/degradation methods employed in mass spectrometry to solve some structural and analytical problems. Advantages and applications of various positions of reaction systems connected mainly to a mass spectrometer or a gas chromatograph/mass spectrometer are considered. Among these are reaction systems connected directly to the mass spectrometer (reaction mass spectrometry, pyrolysis-mass spectrometry or direct pyrolysis-mass spectrometry); flash-heaters as reactors in gas chromatography/mass spectrometry (GC/MS); in-line chemical reactors located before the chromatographic column [pre-column derivatization/degradation with the use of catalytic reactions, pyrolysis (pyrolysis-GC/MS), degradation in elemental analyzers-isotope ratio mass pectrometry (EA-IRMS)]; on-column derivatization and deuteration; reactor located between the chromatographic column and a mass spectrometer [post-column catalytic derivatization, gas chromatograph-combustion-isotope ratio mass spectrometer (GC-c-IRMS)]. Post-column derivatization in high performance liquid chromatography/mass spectro-metry is briefly mentioned. Application of such on-line methodology to structure elucidation of low molecular mass compounds and polymers, to the determination of isotope ratios of the most common elements, to the investigation of catalytic reactions is discussed..  相似文献   

14.
A commercial interface coupling liquid chromatography (LC) to a continuous‐flow isotope ratio mass spectrometry (CF‐IRMS) instrument was used to determine the δ13C of dissolved organic carbon (DOC) in natural waters. Stream and soil waters from a farmland plot in a hedgerow landscape were studied. Based on wet chemical oxidation of dissolved organics the LC/IRMS interface allows the on‐line injection of small volumes of water samples, an oxidation reaction to produce CO2 and gas transfer to the isotope ratio mass spectrometer. In flow injection analysis (FIA) mode, bulk DOC δ13C analysis was performed on aqueous samples of up to 100 μL in volume in the range of DOC concentration in fresh waters (1–10 mg C.L–1). Mapping the DOC δ13C spatial distribution at the plot scale was made possible by this fairly quick method (10 min for triplicate analyses) with little sample manipulation. The relative contributions of different plot sectors to the DOC pool in the stream draining the plot were tentatively inferred on the basis of δ13C differences between the hydrophilic and hydrophobic components. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
It is well known that N(2) in the ion source of a mass spectrometer interferes with the CO background during the δ(18)O measurement of carbon monoxide. A similar problem arises with the high-temperature conversion (HTC) analysis of nitrogenous O-bearing samples (e.g. nitrates and keratins) to CO for δ(18)O measurement, where the sample introduces a significant N(2) peak before the CO peak, making determination of accurate oxygen isotope ratios difficult. Although using a gas chromatography (GC) column longer than that commonly provided by manufacturers (0.6 m) can improve the efficiency of separation of CO and N(2) and using a valve to divert nitrogen and prevent it from entering the ion source of a mass spectrometer improved measurement results, biased δ(18)O values could still be obtained. A careful evaluation of the performance of the GC separation column was carried out. With optimal GC columns, the δ(18)O reproducibility of human hair keratins and other keratin materials was better than ± 0.15 ‰ (n=5; for the internal analytical reproducibility), and better than ± 0.10 ‰ (n=4; for the external analytical reproducibility).  相似文献   

16.
A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone.  相似文献   

17.
Amino sugars have been used as biomarkers to assess the relative contribution of dead microbial biomass of different functional groups of microorganisms to soil carbon pools. However, little is known about the dynamics of these compounds in soil. The isotopic composition of individual amino sugars can be used as a tool to determine the turnover of these compounds. Methods to determine the δ13C of amino sugars using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) have been proposed in literature. However, due to derivatization, the uncertainty on the obtained δ13C is too high to be used for natural abundance studies. Therefore, a new high‐performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) methodology, with increased accuracy and precision, has been developed. The repeatability on the obtained δ13C values when pure amino sugars were analyzed were not significantly concentration‐dependent as long as the injected amount was higher than 1.5 nmol. The δ13C value of the same amino sugar spiked to a soil deviated by only 0.3‰ from the theoretical value. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high‐precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment δ13C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline‐resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed‐mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed‐mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed‐mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a practical guide for the development of new chromatographic methods compatible with LC/IRMS applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the δ values of these reference materials should bracket the isotopic range of samples with unknown δ values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW‐SLAP) and carbonates (NBS 19 and L‐SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA‐IRMS). At present only L‐glutamic acids USGS40 and USGS41 satisfy these requirements for δ13C and δ15N, with the limitation that L‐glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on‐line (i.e. continuous flow) hydrogen reductive gas chromatography‐isotope ratio mass‐spectrometry (GC‐IRMS), (ii) five nicotines for oxidative C, N gas chromatography‐combustion‐isotope ratio mass‐spectrometry (GC‐C‐IRMS, or GC‐IRMS), and (iii) also three acetanilide and three urea reference materials for on‐line oxidative EA‐IRMS for C and N. Isotopic off‐line calibration against international stable isotope measurement standards at Indiana University adhered to the ‘principle of identical treatment’. The new reference materials cover the following isotopic ranges: δ2Hnicotine ?162 to ?45‰, δ13Cnicotine ?30.05 to +7.72‰, δ15Nnicotine ?6.03 to +33.62‰; δ15Nacetanilide +1.18 to +40.57‰; δ13Curea ?34.13 to +11.71‰, δ15Nurea +0.26 to +40.61‰ (recommended δ values refer to calibration with NBS 19, L‐SVEC, IAEA‐N‐1, and IAEA‐N‐2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC‐IRMS that are available with different δ15N values. Comparative δ13C and δ15N on‐line EA‐IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA‐IRMS reference materials. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

20.
Important aspects of glucose metabolism can be quantified by using the minimal model of glucose kinetics to interpret the results of intravenous glucose tolerance tests. The power of this methodology can be greatly increased by the addition of stable isotopically labelled tracer to the glucose bolus dose. This allows the separation of glucose disposal from endogenous glucose production and also increases the precision of the estimates of the physiological parameters measured. Until now the tracer of choice has been deuteriated glucose and the analytical technique has been gas chromatography/mass spectrometry (GC/MS). The consequence of this choice is that nearly 2 g of labelled material are needed and this makes the test expensive. We have investigated the use of (13)C-labelled glucose as the tracer in combination with gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as the analytical technique. This methodology offers superior analytical precision when compared with the conventional method and so the amount of tracer used, and hence the cost, can be reduced considerably. Healthy non-obese male volunteers were recruited for a standard intravenous glucose tolerance test (IVGTT) protocol but 6,6-(2)H-glucose and 1-(13)C-glucose were administered simultaneously. Tracer/tracee ratios were derived from isotope ratio measurements of plasma glucose using both GC/MS and GC/C/IRMS. The results of these determinations indicated that the two tracers behaved identically under the test protocol. The combination of these results with plasma glucose and insulin concentration data allowed determination of the minimal model parameters S*g and S*i. The parameter relating to insulin-assisted glucose disposal, S*i, was found to be the same in the two techniques, but this was not the case for the non-insulin-dependent parameter S*g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号