首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Zahedeh Azhdari 《代数通讯》2013,41(10):4133-4139
Let G be a group and Autc(G) be the group of all central automorphisms of G. We know that in a finite p-group G, Autc(G) = Inn(G) if and only if Z(G) = G′ and Z(G) is cyclic. But we shown that we cannot extend this result for infinite groups. In fact, there exist finitely generated nilpotent groups of class 2 in which G′ =Z(G) is infinite cyclic and Inn(G) < C* = Autc(G). In this article, we characterize all finitely generated groups G for which the equality Autc(G) = Inn(G) holds.  相似文献   

2.
Let P n and T n be the partial transformation and the full transformation semigroups on the set {1,…, n}, respectively. In this paper we find necessary and sufficient conditions for any set of partial transformations of height r in the subsemigroup PK(n, r) = {α ∈P n : |im (α)| ≤r} of P n to be a (minimal) generating set of PK(n, r); and similarly, for any set of full transformations of height r in the subsemigroup K(n, r) = {α ∈T n : |im (α)| ≤r} of T n to be a (minimal) generating set of K(n, r) for 2 ≤ r ≤ n ? 1.  相似文献   

3.
Denote by ω(G) the number of orbits of the action of Aut(G) on the finite group G. We prove that if G is a finite nonsolvable group in which ω(G) ≤5, then G is isomorphic to one of the groups A5, A6, PSL(2, 7), or PSL(2, 8). We also consider the case when ω(G) = 6 and show that, if G is a nonsolvable finite group with ω(G) = 6, then either GPSL(3, 4) or there exists a characteristic elementary abelian 2-subgroup N of G such that G/NA5.  相似文献   

4.
Jian Wang  Juanjuan Fan 《代数通讯》2013,41(9):4102-4109
Supercharacter theories for an arbitrary finite group were developed by Diaconis and Isaacs. Let G* denote the set of all π-regular elements of G. Set Iπ(G) = {χ* | χ ∈Irr(G) and χ* ≠ α* + β* for characters α, β of G}, where χ* means the restriction of χ to G*. In this paper, we consider the partitions of Iπ(G) and G* for a π-separable group G. We obtain some results which generalize those of Diaconis and Isaacs.  相似文献   

5.
Let G be a group. If the set 𝒜(G) = {α ∈Aut(G) | xα(x) = α(x)x, for all x ∈ G} forms a subgroup of Aut(G), then G is called 𝒜(G)-group. We show that the minimum order of a non-𝒜(G) p-group is p 5 for any prime p. We also find the smallest group order of a non-𝒜(G) group. This is related to a question introduced by Deaconescu, Silberberg, and Walls [4 Deaconescu , M. , Silberberg , Gh. , Walls , G. ( 2002 ). On commuting automorphisms of groups . Arch. Math 79 : 423429 .[Crossref] [Google Scholar]]. Moreover, we prove that for any prime p and for all integer n ≥ 5, there exists a non-𝒜(G) group of order p n .  相似文献   

6.
George Szeto 《代数通讯》2013,41(12):3979-3985
Let B be a Galois algebra over a commutative ring R with Galois group G such that B H is a separable subalgebra of B for each subgroup H of G. Then it is shown that B satisfies the fundamental theorem if and only if B is one of the following three types: (1) B is an indecomposable commutative Galois algebra, (2) B = Re ⊕ R(1 ? e) where e and 1 ? e are minimal central idempotents in B, and (3) B is an indecomposable Galois algebra such that for each separable subalgebra A, V B (A) = ?∑ gG(A) J g , and the centers of A and B G(A) are the same where V B (A) is the commutator subring of A in B, J g  = {b ∈ B | bx = g(x)b for each x ∈ B} for a g ∈ G, and G(A) = {g ∈ G | g(a) = a for all a ∈ A}.  相似文献   

7.
AA-Rings     
《代数通讯》2013,41(10):3853-3860
Abstract

Let R be a ring with identity such that R +, the additive group of R, is torsion-free of finite rank (tffr). The ring R is called an E-ring if End(R +) = {x ? ax : a ∈ R} and is called an A-ring if Aut(R +) = {x ? ux : u ∈ U(R)}, where U(R) is the group of units of R. While E-rings have been studied for decades, the notion of A-rings was introduced only recently. We now introduce a weaker notion. The ring R, 1 ∈ R, is called an AA-ring if for each α ∈ Aut(R +) there is some natural number n such that α n  ∈ {x ? ux : u ∈ U(R)}. We will find all tffr AA-rings with nilradical N(R) ≠ {0} and show that all tffr AA-rings with N(R) = {0} are actually E-rings. As a consequence of our results on AA-rings, we are able to prove that all tffr A-rings are indeed E-rings.  相似文献   

8.
A weak Cayley table isomorphism is a bijection φ:GH of groups such that φ(xy)~φ(x)φ(y) for all x,yG. Here ~ denotes conjugacy. When G = H the set of all weak Cayley table isomorphisms φ:GG forms a group 𝒲(G) that contains the automorphism group Aut(G) and the inverse map I:GG,x?x?1. Let 𝒲0(G) = ?Aut(G),I?≤𝒲(G) and say that G has trivial weak Cayley table group if 𝒲(G) = 𝒲0(G). We show that PSL(2,pn) has trivial weak Cayley table group, where p≥5 is a prime and n≥1.  相似文献   

9.
Let R be a noncommutative prime ring and I a nonzero left ideal of R. Let g be a generalized derivation of R such that [g(r k ), r k ] n  = 0 for all r ∈ I, where k, n are fixed positive integers. Then there exists c ∈ U, the left Utumi quotient ring of R, such that g(x) = xc and I(c ? α) = 0 for a suitable α ∈ C. In particular we have that g(x) = α x, for all x ∈ I.  相似文献   

10.
Emerson de Melo 《代数通讯》2013,41(11):4797-4808
Let M = FH be a finite group that is a product of a normal abelian subgroup F and an abelian subgroup H. Assume that all elements in M?F have prime order p, and F has at most one subgroup of order p. Examples of such groups are dihedral groups for p = 2 and the semidirect product of a cyclic group F by a group H of prime order p such that C F (H) = 1 or |C F (H)| =p and C F/C F (H)(H) = 1. Suppose that M acts on a finite group G in such a manner that C G (F) = 1. We prove that the Fitting height h(G) of G is at most h(C G (H))+ 1. Moreover, the Fitting series of C G (H) coincides with the intersection of C G (H) with the Fitting series of G.  相似文献   

11.
Let R be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, and f(x1,…, xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that F and G are two generalized derivations of R and d is a nonzero derivation of R such that d(F(f(r))f(r) ? f(r)G(f(r))) = 0 for all r = (r1,…, rn) ∈ Rn, then one of the following holds:
  1. There exist a, p, q, c ∈ U and λ ∈C such that F(x) = ax + xp + λx, G(x) = px + xq and d(x) = [c, x] for all x ∈ R, with [c, a ? q] = 0 and f(x1,…, xn)2 is central valued on R;

  2. There exists a ∈ U such that F(x) = xa and G(x) = ax for all x ∈ R;

  3. There exist a, b, c ∈ U and λ ∈C such that F(x) = λx + xa ? bx, G(x) = ax + xb and d(x) = [c, x] for all x ∈ R, with b + αc ∈ C for some α ∈C;

  4. R satisfies s4 and there exist a, b ∈ U and λ ∈C such that F(x) = λx + xa ? bx and G(x) = ax + xb for all x ∈ R;

  5. There exist a′, b, c ∈ U and δ a derivation of R such that F(x) = ax + xb ? δ(x), G(x) = bx + δ(x) and d(x) = [c, x] for all x ∈ R, with [c, a′] = 0 and f(x1,…, xn)2 is central valued on R.

  相似文献   

12.
Daniil Shved 《代数通讯》2017,45(5):1842-1852
If G is an arbitrary group, then the group Autvt(G) consists, by definition, of all virtually trivial automorphisms of G, i.e. of all automorphisms that have the fixed-point subgroup of finite index in G. We investigate the structure of Autvt(G) and show that it possesses a certain “well-behaved” normal series which demonstrates its closeness to finitary linear groups. This is then used to prove that each simple section of Autvt(G) is a finitary linear group.  相似文献   

13.
Basim Samir 《代数通讯》2013,41(6):2425-2436
Let α be an ordinal and κ be a cardinal, both infinite, such that κ ≤ |α|. For τ ∈αα, let sup(τ) = {i ∈ α: τ(i) ≠ i}. Let G κ = {τ ∈αα: |sup(τ)| < κ}. We consider variants of polyadic equality algebras by taking cylindrifications on Γ ? α, |Γ| < κ and substitutions restricted to G κ. Such algebras are also enriched with generalized diagonal elements. We show that for any variety V containing the class of representable algebas and satisfying a finite schema of equations, V fails to have the amalgamation property. In particular, many varieties of Halmos’ quasi-polyadic equality algebras and Lucas’ extended cylindric algebras (including that of the representable algebras) fail to have the amalgamation property.  相似文献   

14.
Suppose V is a vector space with dim V = p ≥ q ≥ ?0, and let T(V) denote the semigroup (under composition) of all linear transformations of V. For α ∈ T (V), let ker α and ran α denote the “kernel” and the “range” of α, and write n(α) = dim ker α and d(α) = codim ran α. In this article, we study the semigroups AM(p, q) = {α ∈ T(V):n(α) < q} and AE(p, q) = {α ∈ T(V):d(α) < q}. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area,, we also determine all the maximal right simple subsemigroups of AM(p, q).  相似文献   

15.
G. L. Booth  K. Mogae 《代数通讯》2017,45(1):322-331
For any group G such that G is a right R-module for some ring R, the elements of R act on G as endomorphisms and we obtain the near-ring of R-homogeneous maps on G: MR(G) = {f: G → G|f(ga) = f(g)a for all a ∈ R, g ∈ G}. In the special case that R is a topological ring and G is a topological R-module, we study NR(G): = {f ∈ MR(G)|f is continuous}. In particular, we investigate primeness of the near-ring NR(G) of continuous homogeneous maps on G.  相似文献   

16.
Lingli Wang 《代数通讯》2013,41(2):523-528
Let G be a nonabelian group and associate a noncommuting graph ?(G) with G as follows: The vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. In 1987, Professor J. G. Thompson gave the following conjecture.

Thompson's Conjecture. If G is a finite group with Z(G) = 1 and M is a nonabelian simple group satisfying N(G) = N(M), then G ? M, where N(G):={n ∈ ? | G has a conjugacy class of size n}.

In 2006, A. Abdollahi, S. Akbari, and H. R. Maimani put forward a conjecture (AAM's conjecture) in Abdollahi et al. (2006) as follows.

AAM's Conjecture. Let M be a finite nonabelian simple group and G a group such that ?(G) ? ? (M). Then G ? M.

In this short article we prove that if G is a finite group with ?(G) ? ? (A 10), then G ? A 10, where A 10 is the alternating group of degree 10.  相似文献   

17.
Let F n be the free group of rank n, and let Aut+(F n ) be its special automorphism group. For an epimorphism π : F n G of the free group F n onto a finite group G we call the standard congruence subgroup of Aut+(F n ) associated to G and π. In the case n = 2 we fully describe the abelianization of Γ+(G, π) for finite abelian groups G. Moreover, we show that if G is a finite non-perfect group, then Γ+(G, π) ≤ Aut+(F 2) has infinite abelianization.  相似文献   

18.
Let G be a finite simple graph on a vertex set V(G) = {x 11,…, x n1}. Also let m 1,…, m n  ≥ 2 be integers and G 1,…, G n be connected simple graphs on the vertex sets V(G i ) = {x i1,…, x im i }. In this article, we provide necessary and sufficient conditions on G 1,…, G n for which the graph obtained by attaching the G i to G is unmixed or vertex decomposable. Then we characterize Cohen–Macaulay and sequentially Cohen–Macaulay graphs obtained by attaching the cycle graphs or connected chordal graphs to arbitrary graphs.  相似文献   

19.
Let G = NwrC n be the wreath product of N by C n , where N is a finite nilpotent group and C n is a cyclic group of order n. Then the normalizer property holds for G.  相似文献   

20.
S. G. Quek  P. C. Wong 《代数通讯》2013,41(12):4693-4701
An element g in a group G is called a left Engel element of G, if for each x ∈ G, there is a positive integer n = n(g, x) such that [x, n g] = 1. In this article, we will study a generalization of the left Engel elements and its connections with the generalized Hirsch–Plotkin and Baer radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号