首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On Clean Rings     
A ring R is called clean if every element of R is the sum of an idempotent and a unit. Let M be a R-module. It is obtained in this article that the endomorphism ring End(M) is clean if and only if, whenever A = M′ ⊕ B = A1A2 with M′ ? M, there is a decomposition M′ =M1M2 such that A = M′ ⊕ [A1 ∩ (M1B)] ⊕ [A2 ∩ (M2B)]. Then unit-regular endomorphism rings are also described by direct decompositions.  相似文献   

2.
Huanyin Chen 《代数通讯》2013,41(3):911-921
ABSTRACT

We prove that an ideal I of a regular ring R is separative if and only if each a ? R satisfying Rr(a)aR = Ra?(a)R = RaR(1 ? a)R ? I is unit-regular. If I is a separative ideal of a regular ring R, then each a ? R satisfying Rar(a2) = ?(a2)aR = R(a ? a2) R ? I is clean. Some applications are also obtained.  相似文献   

3.
4.
Friedrich Kasch 《代数通讯》2013,41(4):1459-1478
ABSTRACT

We define “regular” for maps in a Hom group. This notion specializes to the well-known notions of (Von Neumann) regular in rings and modules. A map f ∈ Hom R (A,M) is regular if and only if Ker(f) ? A and Im(f) ? M. There exists a unique maximal regular End(M)-End(A)-submodule in Hom R (A,M). We study regularity in Hom R (A 1 ⊕ A 2, M 1 ⊕ M 2). The existence of a regular function Hom R (A,M) implies the existence of projective summands of Hom R (A,M) End R (A) and of End R ( M ) Hom R (A,M). We consider regularity in endomorphism rings, and generalize a theorem of Ware-Zelmanowitz. We examine connections between the maximum regular bimodule and other substructures of Hom, mention two generalizations of regularity, and raise some questions.  相似文献   

5.
George Szeto 《代数通讯》2013,41(12):3979-3985
Let B be a Galois algebra over a commutative ring R with Galois group G such that B H is a separable subalgebra of B for each subgroup H of G. Then it is shown that B satisfies the fundamental theorem if and only if B is one of the following three types: (1) B is an indecomposable commutative Galois algebra, (2) B = Re ⊕ R(1 ? e) where e and 1 ? e are minimal central idempotents in B, and (3) B is an indecomposable Galois algebra such that for each separable subalgebra A, V B (A) = ?∑ gG(A) J g , and the centers of A and B G(A) are the same where V B (A) is the commutator subring of A in B, J g  = {b ∈ B | bx = g(x)b for each x ∈ B} for a g ∈ G, and G(A) = {g ∈ G | g(a) = a for all a ∈ A}.  相似文献   

6.
Huanyin Chen 《代数通讯》2013,41(9):3494-3506
An element a ∈ R is unit-regular provided that there exists an invertible u ∈ R such that a = aua. A ring R is called an almost unit-regular ring provided that for any a ∈ R, either a or 1 ? a is unit-regular. We characterize, in this article, the almost unit-regularity of Morita contexts with zero pairings. We also show that a ring R is unit-regular if and only if M 2(R) is almost unit-regular. Various examples of such rings are constructed by means of formal triangular matrix rings.  相似文献   

7.
A principal right ideal of a ring is called uniquely generated if any two elements of the ring that generate the same principal right ideal must be right associated (i.e., if for all a,b in a ring R, aR = bR implies a = bu for some unit u of R). In the present paper, we study “uniquely generated modules” as a module theoretic version of “uniquely generated ideals,” and we obtain a characterization of a unit-regular endomorphism ring of a module in terms of certain uniquely generated submodules of the module among some other results: End(M) is unit-regular if and only if End(M) is regular and all M-cyclic submodules of a right R-module M are uniquely generated. We also consider the questions of when an arbitrary element of a ring is associated to an element with a certain property. For example, we consider this question for the ring R[x;σ]∕(xn+1), where R is a strongly regular ring with an endomorphism σ be an endomorphism of R.  相似文献   

8.
9.
Dave Benson  Leonard Evens 《代数通讯》2013,41(10):3447-3451

In this article, we call a ring R right generalized semiregular if for any a ∈ R there exist two left ideals P, L of R such that lr(a) = PL, where P ? Ra and Ra ∩ L is small in R. The class of generalized semiregular rings contains all semiregular rings and all AP-injective rings. Some properties of these rings are studied and some results about semiregular rings and AP-injective rings are extended. In addition, we call a ring R semi-π-regular if for any a ∈ R there exist a positive integer n and e 2 = e ∈ a n R such that (1 ? e)a n  ∈ J(R), the Jacobson radical of R. It is shown that a ring R is semi-π-regular if and only if R/J(R) is π-regular and idempotents can be lifted modulo J(R).  相似文献   

10.
Shuanhong Wang 《代数通讯》2013,41(11):4255-4276
In this article, we provide an alternative approach to the definition of a weak Hopf algebra (WHA). For an associative unital algebra A with a coassociative comultiplication Δ ∈Alg u (A, A ? A), the set of homomorphisms from A to A ? A, which do not preserve the units. If the linear maps Ξ1, Ξ2 ∈ End(A ? A), defined by Ξ1(a ? b) = Δ(a)(1 ? b), Ξ2(a ? b) = (a ? 1)Δ(b), are von Neumann regular elements in the ring End(A ? A) of endomorphisms of A ? A satisfying some appropriate assumptions, we call the A a Hopf-type algebra. We show the existence of a target, a source, a counit, and an antipode of A as in the usual WHA.  相似文献   

11.
《代数通讯》2013,41(11):4285-4301
Abstract

Let M be a left R-module and F a submodule of M for any ring R. We call M F-semiregular if for every x ∈ M, there exists a decomposition M = A ⊕ B such that A is projective, A ≤ Rx and Rx ∩ B ≤ F. This definition extends several notions in the literature. We investigate some equivalent conditions to F-semiregular modules and consider some certain fully invariant submodules such as Z(M), Soc(M), δ(M). We prove, among others, that if M is a finitely generated projective module, then M is quasi-injective if and only if M is Z(M)-semiregular and M ⊕ M is CS. If M is projective Soc(M)-semiregular module, then M is semiregular. We also characterize QF-rings R with J(R)2 = 0.  相似文献   

12.
Hongbo Zhang 《代数通讯》2013,41(4):1420-1427
An element of a ring R is called “strongly clean” if it is the sum of an idempotent and a unit that commute, and R is called “strongly clean” if every element of R is strongly clean. A module M is called “strongly clean” if its endomorphism ring End(M) is a strongly clean ring. In this article, strongly clean modules are characterized by direct sum decompositions, that is, M is a strongly clean module if and only if whenever M′⊕ B = A 1A 2 with M′? M, there are decompositions M′ = M 1M 2, B = B 1B 2, and A i  = C i D i (i = 1,2) such that M 1B 1 = C 1D 2 = M 1C 1 and M 2B 2 = D 1C 2 = M 2C 2.  相似文献   

13.
In this paper, we introduce and study the dual notion of simple-direct-injective modules. Namely, a right R-module M is called simple-direct-projective if, whenever A and B are submodules of M with B simple and M/A ? B ?M, then A ?M. Several characterizations of simple-direct-projective modules are provided and used to describe some well-known classes of rings. For example, it is shown that a ring R is artinian and serial with J2(R) = 0 if and only if every simple-direct-projective right R-module is quasi-projective if and only if every simple-direct-projective right R -module is a D3-module. It is also shown that a ring R is uniserial with J2(R) = 0 if and only if every simple-direct-projective right R-module is a C3-module if and only if every simple-direct-injective right R -module is a D3-module.  相似文献   

14.
AA-Rings     
《代数通讯》2013,41(10):3853-3860
Abstract

Let R be a ring with identity such that R +, the additive group of R, is torsion-free of finite rank (tffr). The ring R is called an E-ring if End(R +) = {x ? ax : a ∈ R} and is called an A-ring if Aut(R +) = {x ? ux : u ∈ U(R)}, where U(R) is the group of units of R. While E-rings have been studied for decades, the notion of A-rings was introduced only recently. We now introduce a weaker notion. The ring R, 1 ∈ R, is called an AA-ring if for each α ∈ Aut(R +) there is some natural number n such that α n  ∈ {x ? ux : u ∈ U(R)}. We will find all tffr AA-rings with nilradical N(R) ≠ {0} and show that all tffr AA-rings with N(R) = {0} are actually E-rings. As a consequence of our results on AA-rings, we are able to prove that all tffr A-rings are indeed E-rings.  相似文献   

15.
Huanyin Chen 《代数通讯》2013,41(10):3567-3579
An ideal I of a ring R is generalized stable in case aR + bR = R with a ∈ I, b ∈ R implies that there exist s, t ∈ 1 + I such that s(a + by)t = 1 for a y ∈ R. We establish, in this article, necessary and sufficient conditions for an ideal of a regular ring to be generalized stable. It is shown that every regular square matrix over such ideals admits a diagonal reduction. These extend the corresponding results of generalized stable regular rings.  相似文献   

16.
We denote by 𝒜(R) the class of all Artinian R-modules and by 𝒩(R) the class of all Noetherian R-modules. It is shown that 𝒜(R) ? 𝒩(R) (𝒩(R) ? 𝒜(R)) if and only if 𝒜(R/P) ? 𝒩(R/P) (𝒩(R/P) ? 𝒜(R/P)), for all centrally prime ideals P (i.e., ab ∈ P, a or b in the center of R, then a ∈ P or b ∈ P). Equivalently, if and only if 𝒜(R/P) ? 𝒩(R/P) (𝒩(R/P) ? 𝒜(R/P)) for all normal prime ideals P of R (i.e., ab ∈ P, a, b normalize R, then a ∈ P or b ∈ P). We observe that finitely embedded modules and Artinian modules coincide over Noetherian duo rings. Consequently, 𝒜(R) ? 𝒩(R) implies that 𝒩(R) = 𝒜(R), where R is a duo ring. For a ring R, we prove that 𝒩(R) = 𝒜(R) if and only if the coincidence in the title occurs. Finally, if Q is the quotient field of a discrete valuation domain R, it is shown that Q is the only R-module which is both α-atomic and β-critical for some ordinals α,β ≥ 1 and in fact α = β = 1.  相似文献   

17.
A right R-module M is called simple-direct-injective if, whenever, A and B are simple submodules of M with A?B, and B?M, then A?M. Dually, M is called simple-direct-projective if, whenever, A and B are submodules of M with MA?B?M and B simple, then A?M. In this paper, we continue our investigation of these classes of modules strengthening many of the established results on the subject. For example, we show that a ring R is uniserial (artinian serial) with J2(R) = 0 iff every simple-direct-projective right R-module is an SSP-module (SIP-module) iff every simple-direct-injective right R-module is an SIP-module (SSP-module).  相似文献   

18.
Let R be a commutative ring with identity. Various generalizations of prime ideals have been studied. For example, a proper ideal I of R is weakly prime (resp., almost prime) if a, b ∈ R with ab ∈ I ? {0} (resp., ab ∈ I ? I 2) implies a ∈ I or b ∈ I. Let φ:?(R) → ?(R) ∪ {?} be a function where ?(R) is the set of ideals of R. We call a proper ideal I of R a φ-prime ideal if a, b ∈ R with ab ∈ I ? φ(I) implies a ∈ I or b ∈ I. So taking φ?(J) = ? (resp., φ0(J) = 0, φ2(J) = J 2), a φ?-prime ideal (resp., φ0-prime ideal, φ2-prime ideal) is a prime ideal (resp., weakly prime ideal, almost prime ideal). We show that φ-prime ideals enjoy analogs of many of the properties of prime ideals.  相似文献   

19.
20.
Frank Loose 《代数通讯》2013,41(7):2395-2416
Abstract

A ring R is called left P-injective if for every a ∈ R, aR = r(l(a)) where l? ) and r? ) denote left and right annihilators respectively. The ring R is called left GP-injective if for any 0 ≠ a ∈ R, there exists n > 0 such that a n  ≠ 0 and a n R = r(l(a n )). As a response to an open question on GP -injective rings, an example of a left GP-injective ring which is not left P-injective is given. It is also proved here that a ring R is left FP -injective if and only if every matrix ring 𝕄 n (R) is left GP-injective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号