首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Vicinal 13C, H coupling constants 3J(CO, H) for butenedioic acids and 3J(CH3, H) for 3-pentene-2-ones have been determined and are correlated with the configuration of the corresponding C?C double bond. For both types the relationship 3J(CH) trans > 3J(CH)cis holds; in the case of the CH3, H couplings, however, the 3J(CH3, H) trans values are reduced because of steric reasons, so that configurational assignments seem possible only when both isomers are present. Additionally, the coupling constants 3J(COC H3,H ) and the chemical shifts δ have been evaluated for the pentenones and it is shown that these parameters give information about the predominating conformation of α, β-unsaturated methyl ketones.  相似文献   

2.
The NMR spectra of fifteen para-substituted acetanilides, XC6H4·NH·CO·CH3 (X = NH·CO·Me; NH2; CO·OEt; COOH; Cl; OEt; F; H; OMe; CH3; NO2; C6H5; ? N?N? C6H5; Me3Si), have been recorded. δ and δNH are linearly related to Hammett's σp constant. The coupling J (o-H? H) between aromatic protons is mainly dependent on σR0. J(13C? H), in methyl group is approximatively constant in the series.  相似文献   

3.
The Correlation of Tolman's Cone Angles with 1J of Phosphonium Fluorosulfonates A 1H-n.m.r. study of three series of phosphonium salts [HPR3?nHn]X, and [HPPh2R1?nHn]X and (R = aliphatic substituent and H, X = SO3 F) gives a good relationship between increasing values of 1J versus decreasing size of substituted phosphines. A method to obtain Tolman's cone angle is described.  相似文献   

4.
From a carbon magnetic resonance study of several alkylcobaloximes RCo(DMG)2B (DMG = dimethylglyoximate monoanion), it was possible to estimate the α, β and γ effects of the Co(DMG)2B group on the chemical shifts of the carbon atoms of various alkyl groups R. The chemical shifts of the carbon atoms belonging to the equatorial ligands and to the axial base B are not significantly affected by structural modification of the R groups. Values of δ in benzylcobaloximes XC6H4CH2Co(DMG)2B agree with a donor effect of the ? CH2Co(DMG)2B radical. Values of 1J(13C? H) coupling constants, measured in 13C enriched methylcobaloximes, do not vary appreciably when B is changed (J(13C? H) = 137 ± 1 Hz) and are close to the value obtained for methylcobalamine.  相似文献   

5.
Diversification of the βcarboline skeleton has been demonstrated to assemble a βcarboline library starting from the tetrahydro‐βcarboline framework. This strategy affords feasible access to heteroaryl‐, aryl‐, alkenyl‐, or alkynyl‐substituted β‐carbolines at the C1, C3, or C8 position through three categorically different types of transition‐metal‐catalyzed C?C bond‐forming reactions, in the presence of multiple potentially reactive positions. These site‐selective functionalizations include; 1) the Cu‐catalyzed C1/C3‐selective decarboxylative C?C and C?Csp coupling of hexahydro‐βcarboline‐3‐carboxylic acid with a C?H bond of a heteroarene or terminal alkyne; 2) the chelation‐assisted Pd‐catalyzed C1/C8‐selective C?H arylation of hexahydro‐β‐carboline with aryl boron reagents; and 3) the chelation‐assisted Pd‐catalyzed C1/C3‐selective oxidative C?H/C?H cross‐coupling of βcarboline‐N‐oxide with arenes, heteroarenes, or alkenes. The saturated structural feature of the hexahydro‐βcarboline framework can increase reactivity and control site selectivity. The robustness of these approaches has been demonstrated through the synthesis of hyrtioerectine analogues and perlolyrine. We believe that these strategies could provide inspiration for late‐stage diversifications of bioactive core scaffolds.  相似文献   

6.
The mechanism of copper‐mediated Sonogashira couplings (so‐called Stephens–Castro and Miura couplings) is not well understood and lacks clear comprehension. In this work, the reactivity of a well‐defined aryl‐CuIII species ( 1 ) with p‐R‐phenylacetylenes (R=NO2, CF3, H) is reported and it is found that facile reductive elimination from a putative aryl‐CuIII‐acetylide species occurs at room temperature to afford the Caryl?Csp coupling species ( IR ), which in turn undergo an intramolecular reorganisation to afford final heterocyclic products containing 2H‐isoindole ( P , P , PHa ) or 1,2‐dihydroisoquinoline ( PHb ) substructures. Density Functional Theory (DFT) studies support the postulated reductive elimination pathway that leads to the formation of C?Csp bonds and provide the clue to understand the divergent intramolecular reorganisation when p‐H‐phenylacetylene is used. Mechanistic insights and the very mild experimental conditions to effect Caryl?Csp coupling in these model systems provide important insights for developing milder copper‐catalysed Caryl?Csp coupling reactions with standard substrates in the future.  相似文献   

7.
1H and 13C NMR spectra of 15N-methylaniline, 15N-methylphenylpropargylamine and 15N-methylphenylpropynylamine have been studied. The s character of nitrogen, deduced from 1J(15N? 13C) and 1J(15N? 13C), indicates that nitrogen hybridisation is intermediate between sp3 and sp2 in 15N-methylaniline and 15N-methylphenylpropargylamine, while nitrogen is sp2 in the α-acetylenic amine. The 1J(15N? 13Csp)cou pling constant calculated with the help of Binsch's relation does not agree with the experimental value, suggesting that orbital and dipolar mechanisms make substantial contributions to this coupling constant.  相似文献   

8.
A regio‐ and stereoselective synthesis of sulfones and thioethers by means of CuI‐catalyzed aerobic oxidative N?S bond cleavage of sulfonyl hydrazides, followed by cross‐coupling reactions with alkenes and aromatic compounds to form the C?S bond, is described herein. N2 and H2O are the byproducts of this transformation, thus offering an environmentally benign process with a wide range of potential applications in organic synthesis and medicinal chemistry.  相似文献   

9.
The J coupling constants of a series of p-substituted phenyltrimethylsilanes were measured in CH2Cl2 and CCl4 solutions. The solvent effect is discussed; it is too large to allow any straightward conclusion on ring-substituent interaction.  相似文献   

10.
The mechanism of the photolysis of formaldehyde was studied in experiments at 3130 Å and in the pressure range of 1–12 torr at 25°C. The experiments were designed to establish the quantum yields of the primary decomposition steps (1) and (2), CH2O + hν → H + HCO (1): CH2O + hν → H2 + CO (2), through the effects of added isobutene, trimethylsilane, and nitric oxide on ΦCO and Φ. The ratio ΦCO/Φ was found to be 1.01 ± 0.09(2σ) and (Φ + ΦCO)/2 = 1.10 ± 0.08 over the range of pressures and a 12-fold change in incident light intensity. Isobutene and nitric oxide additions reduced Φ to about the same limiting value, 0.32 ± 0.03 and 0.34 ± 0.04, respectively, but these added gases differed in their effects on ΦCO. With isobutene addition ΦCO/Φ reached a limiting value of 2.3; with NO addition ΦCO exceeded unity. The addition of small amounts of Me3SiH reduced Φ to 1.02 ± 0.08 and lowered ΦCO to 0.7. These findings were rationalized in terms of a mechanism in which the “nonscavengeable,” molecular hydrogen is formed in reaction (2) with ?2 = 0.32 ± 0.03, while the “free radical” hydrogen is formed in reaction (1) with ?1 = 0.68 ± 0.03. In the pure formaldehyde system these reactions are followed by (3)–(5): H + CH2O → H2 + HCO (3); 2HCO → CH2O + CO (4); 2HCO → H2 + 2CO (5). The data suggest k4/k5 ? 5.8. Isobutene reduced Φ by the reaction H + iso-C4H8 → C4H9 (20), and the results give k20/k3 ? 43 ± 4, in good agreement with the ratio of the reported values of the individual constants k3 and k20.  相似文献   

11.
The complexes [Fe(tdci)2]Cl3 and [Al(tdci)2]Cl3 (tdci = 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol) were prepared and characterized by mass spectrometry, NMR spectroscopy, and magnetic-susceptibility measurements. The formation constants were determined in aqueous solution (25°, 0.1M KCl) by potentiometric titration. pK values of H3(tdci)3+: 5.89, 7.62, 9.68; FeIII complexes: log βML = 18.8, log β = 32.6; AlIII complexes: log βML = 14.3, logβ = 26.4. The protonated complex [FeH(tdci)2]4+ has also been identified. In contrast to the high stability of the FeIII and AlIII complexes, only weak interactions of tdci with CuII have been observed in aqueous solution (25°, 0.1M KNO3).  相似文献   

12.
Reactions of oxygen atoms with ethylene, propene, and 2-butene were studied at room temperature under discharge flow conditions by resonance fluorescence spectroscopy of O and H atoms at pressures of 0.08 to 12 torr. The measured total rate constants of these reactions are K = (7.8 ± 0.6)·10?13cm3s?1,K = (4.3 ± 0.4) ± 10?12 cm3 s?1, K = (1.4 ± 0.4) · 10?11 cm3 s?1. The branching ratios of H atom elimination channels were measured for reactions of O atoms with ethylene and propene. No H-atom elimination was found for the reaction of O-atoms with 2-butene. A redistribution of reaction O + C2 channels with pressure was found. A mechanism of the O + C2 reaction was proposed and the possibility of its application to other olefins is discussed. On the basis of mechanism the pressure dependence of the total rate constant for reaction O + C2 was predicted and experimentally confirmed in the pressure range 0.08–1.46 torr.  相似文献   

13.
The planar diamagnetic complexes [Ni(achdtc)2] ( 1 ),[Ni(achdtc)(PPh3)(NCS)] ( 2 ), and [Ni(achdtc)(PPh3)2]ClO4 · 0.5EtOAc ( 3 ) (achdtc = allylcyclohexylcarbodithioate) were prepared, characterized by elemental analysis, electronic, IR, NMR (1H, 13C, and 31P) spectroscopy and the crystal structures were determined by single‐crystal X‐ray crystallography. The characteristic thioureide bands occur at 1478, 1503, and 1507 cm–1 for 1 , 2 , and 3 , respectively and the corresponding 13C chemical shifts are observed at 207.67, 204.16, and 202.31 ppm. 31P chemical shifts are observed at δ = 29.24 and 22.73 ppm for 2 and 3 , respectively, indicating a strong interaction. Electronic spectral bands are observed at 480, 483, and 475 nm for 1 , 2 , and 3 , corresponding to d → dxy/d transitions. Ni–S distances are asymmetric. The trans influence of PPh3 elongates the Ni–S bonds. The decrease in the S–Ni–S bite angle in 2 [78.80(16)°] and in 3 [78.36(2)°] compared to that observed in 1 [79.42(3)°] is due to the steric crowding of PPh3 around the central metal atom. A comparison of the bond parameters of compounds 1 – 3 shows a change in the arrangement from a planar NiS4 chromophore to distorted planar NiS2P2 chromophores. The observed distortion from planar to tetrahedral arrangement is influenced by the bulky triphenylphosphine ligand.  相似文献   

14.
A cyclohexyl‐based POCOP pincer ligand (POCOP=cis‐1,3‐bis(di‐tert‐butylphosphinito)cyclohexyl) cyclometalates with nickel to generate a series of new POCOP‐supported NiII complexes, including the halide, hydride, methyl, and phenyl species. trans‐[NiCl{cis‐1,3‐bis(di‐tert‐butylphosphinito)cyclohexane}], [(POCOP)NiCl] ( 1 a ) and the analogous bromide complex ( 1 b ) were synthesized and fully characterized by NMR spectroscopy and X‐ray crystallography. Cyclic voltammetry measurements of 1 a and 1 b alongside their bis(phosphine) analogues [(PCP)NiCl] ( 2 a ) and [(PCP)NiCl] ( 2 a ) (PCP=cis‐1,3‐bis(di‐tert‐butylphosphino)cyclohexyl) indicate a reduced electron density at the metal center upon introducing electron‐withdrawing oxygen atoms in the pincer arms. The methyl [(POCOP)NiMe] ( 3 ) and phenyl [(POCOP)NiPh] ( 4 ) complexes were formed from 1 a by reaction with the corresponding organolithium reagents. 1 a also reacts with LiAlH4 to give the hydride complex [(POCOP)NiH] ( 5 ). The methyl complex 3 reacts with phenyl acetylene to give the acetylide complex [(POCOP)NiCCPh] ( 6 ). The reactivity of compounds 3 – 5 towards CO2 was studied. The hydride complex 5 and the methyl complex 3 both underwent CO2 insertion to form the formate species [(POCOP)NiOCOH] ( 7 ) and acetate species [(POCOP)NiOCOCH3] ( 8 ), respectively, although with a higher barrier of insertion in the latter case. Compound 4 was unreactive towards CO2 even at elevated temperatures. Complexes 3 – 8 were all characterized by NMR spectroscopy and X‐ray crystallography.  相似文献   

15.
Published experimental studies concerning the determination of rate constants for the reaction F + H2 → HF + H are reviewed critically and conclusions are presented as to the most accurate results available. Based on these results, the recommended Arrhenius expression for the temperature range 190–376 K is k = (1.1 ± 0.1) × 10−10 exp |-(450 ± 50)/T| cm3 molecule−1 s−1, and the recommended value for the rate constant at 298 K is k = (2.43 ± 0.15) × 10−11 cm3 molecule−1 s−1. The recommended Arrhenius expression for the reaction F + D2 → DF + D, for the same temperature range, based on the recommended expression for k and accurate results for the kinetic isotope effect k/k is k = (1.06 ± 0.12) × 10×10 exp |-(635 ± 55)/T|cm3 molecule−1 s−1, and the recommended value for 298 K is k = (1.25 ± 0.10) × 10−11 cm3 molecule−1 s−1. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 67–71, 1997.  相似文献   

16.
Enamino -thial and -thiones R1C(S)CH?CHNR (R1 = H or alkyl; R2 = Me or Et) have been shown by NMR spectra to exist in two rotational forms, s-cis and s-trans, the populations of the latter being approximately the same as in the case of the parent oxa analogues. An increase of the order of 2 to 4 Kcal/mole in the heights of C? C and C? N rotation barriers (ΔG*) was found on comparing the title compounds with their oxa analogues. IR spectra failed as a tool to establish the rotational equilibrium. IR absorption bands of the νC? C, νC? H (in the NMe2 group) and γHC?CH vibrations have been found, but the νC?S band could not be assigned unambiguously. Anomalies concerning the frequency and intensity of the νC?C band are discussed.  相似文献   

17.
The 13C-NMR. in Zn(II) (Protoporphyrin IX), Fe(III) (Protoporphrin IX) (CN)2, Zn(II) (Deuteroporphyrin IX dimethylester), and Fe(III) (Deuteroporphyrin IX) (CN)2 have been identified, and the 13C hyperfine shifts in the iron complexes evaluated. In a partial analysis of these data the parameters QH, QCCHH, and QC′CHC, which characterize the isotropic coupling through hyperconjugation between the 1H and 13C nuclei of the porphyrin side chains and the unpaired electron spin density on the aromatic ring carbon atoms, have been re-examined. This paper is part of an investigation of the electronic states in low spin ferric hemes and hemoproteins, and the relations between the electronic structures and the biological roles of these molecules.  相似文献   

18.
The reaction of sulfur with primary or secondary amines and formaldehyde has been studied. A simple one step process for the preparation of thioformamides (RR′NCHS; R ? H, R′ ? CH3, C2H5; R ? R′ ? CH3, C2H5; R+R′ ? ? (CH2), ? (CH2), ? C2H4OC2H) and the amine salts of N, N-dialkyl-dithiocarbamic acids (R2NCS2 · H2NR2, R ? CH3, C2H5, C4H9; R2 ? ? (CH2), ? (CH2), ? C2H4OC2H) is reported. In addition, the isolation of diethylamidosulfoxylic acid, (C2H5)2NSOH · 1/2 H2O, the first derivative of a new class of compounds, is described. The physical properties and the 1H-NMR. spectra of the above mentioned compounds are given.  相似文献   

19.
The kinetic isotope effects in the reaction of methane (CH4) with Cl atoms are studied in a relative rate experiment at 298 ± 2 K and 1013 ± 10 mbar. The reaction rates of 13CH4, 12CH3D, 12CH2D2, 12CHD3, and 12CD4 with Cl radicals are measured relative to 12CH4 in a smog chamber using long path FTIR detection. The experimental data are analyzed with a nonlinear least squares spectral fitting method using measured high‐resolution spectra as well as cross sections from the HITRAN database. The relative reaction rates of 12CH4, 13CH4, 12CH3D, 12CH2D2, 12CHD3, and 12CD4 with Cl are determined as k/k = 1.06 ± 0.01, k/k = 1.47 ± 0.03, k/k = 2.45 ± 0.05, k/k = 4.7 ± 0.1, k/k = 14.7 ± 0.3. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 110–118, 2005  相似文献   

20.
The bimolecular rate coefficients k and k were measured using the relative rate technique at (297 ± 3) K and 1 atmosphere total pressure. Values of (2.7 ± 0.7) and (4.0 ± 1.0) × 10?15 cm3 molecule?1 s?1 were observed for k and k, respectively. In addition, the products of 2‐butoxyethanol + NO3? and benzyl alcohol + NO3? gas‐phase reactions were investigated. Derivatizing agents O‐(2,3,4,5,6‐pentafluorobenzyl)hydroxylamine and N, O‐bis (trimethylsilyl)trifluoroacetamide and gas chromatography mass spectrometry (GC/MS) were used to identify the reaction products. For 2‐butoxyethanol + NO3? reaction: hydroxyacetaldehyde, 3‐hydroxypropanal, 4‐hydroxybutanal, butoxyacetaldehyde, and 4‐(2‐oxoethoxy)butan‐2‐yl nitrate were the derivatized products observed. For the benzyl alcohol + NO3? reaction: benzaldehyde ((C6H5)C(?O)H) was the only derivatized product observed. Negative chemical ionization was used to identify the following nitrate products: [(2‐butoxyethoxy)(oxido)amino]oxidanide and benzyl nitrate, for 2‐butoxyethanol + NO3? and benzyl alcohol + NO3?, respectively. The elucidation of these products was facilitated by mass spectrometry of the derivatized reaction products coupled with a plausible 2‐butoxyethanol or benzyl alcohol + NO3? reaction mechanisms based on previously published volatile organic compound + NO3? gas‐phase mechanisms. © 2012 Wiley Periodicals, Inc.
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  • © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 778–788, 2012  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号