首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ruthenium-based oxides with rutile structure were examined regarding their properties in electrocatalytic ethene oxidation in acid media. A possible promoting effect of chloride ions toward oxirane formation was explored. Online differential electrochemical mass spectrometry combined with electrochemical polarization techniques were used to monitor the potential dependence of organic products resulting from ethene oxidation as well as the reaction solution decomposition products. Quantum chemical modeling by means of density functional theory was employed to study key reaction steps. The ethene oxidation in acid media led to CO(2), whereas oxirane was formed in the presence of 0.3 M Cl(-). In the Cl(-) promoted oxidation on RuO(2), oxirane and a small amount of CO(2) were the only detected electro-oxidation products at potentials below the onset of Cl(2) and O(2) evolution, resulting from Cl(-) and water oxidation. It is demonstrated here that the epoxidation is a surface-related electrocatalytic process that depends on the surface properties. Cl acts as the epoxidation promoter that switches off the combustion pathway toward CO(2) and enables the epoxidation reaction channel by surface reactive sites blocking. The proposed epoxidation mechanism implies binuclear (recombination) mechanism for O(2) evolution reaction on considered surfaces.  相似文献   

2.
刘育  徐法强 《分子催化》1994,8(2):138-142
直接利用甲烷氧化偶联产物中的稀乙烯制环氧乙烷刘育,徐法强,沈师孔(中国科学院兰州化学物理研究所,兰州,730000)关键词乙烯环氧化,甲烷氧化偶联,负载银催化剂1.前言甲烷氧化偶联(OCM)是一个产物较为复杂的反应,从目前研究结果来看,产物中C2烃总...  相似文献   

3.
采用MP2方法研究了甲酰胺-H2O2氧化乙烯制取环氧乙烷的反应机理.优化得到了反应物、过渡态、中间体及产物的几何构型并计算了反应势垒.研究结果表明:没有水参与时,反应需要通过四元环过渡态完成,反应势垒很高,在常温下难以进行;有水参与时,在水分子的协助下,反应可以通过六元环过渡态完成,反应势垒较低,常温下反应容易进行.  相似文献   

4.
王俊芳  孙琪  王长生 《化学学报》2010,68(8):727-732
采用MP2方法研究 了甲酰胺-H2O2氧化乙烯制取环氧乙烷的反应机理. 优化得到了反应物、过渡态、中间体及产物的几何构型并计算了反应势垒. 研究结果表明: 没有水参与时, 反应需要通过四元环过渡态完成, 反应势垒很高, 在常温下难以进行; 有水参与时, 在水分子的协助下, 反应可以通过六元环过渡态完成, 反应势垒较低, 常温下反应容易进行.  相似文献   

5.
Selectivity promotion in the Ag-catalysed heterogeneous epoxidation of ethene correlates with halogen electron affinity showing that it is an electronic phenomenon rather than a steric or geometrical effect.  相似文献   

6.
The formation and catalytic behavior of active structures in a SiO(2)-supported unsaturated Ru complex catalyst for alkene epoxidation were studied by means of hybrid density functional theory (DFT) calculations. An energy-gaining route for the catalyst activation was found to allow the formation of active unsaturated Ru complexes and the remarkable alkene epoxidation via an exothermic reaction path between isobutyraldehyde and oxygen. In the proposed Bartlett mechanism, Ru promotes the formation of peracid intermediate and facilitates the intermolecular hydrogen transfer in the peracid intermediate, while alkene molecules do not directly coordinate to the Ru site. It was found that stilbene epoxidation is easier to achieve than ethene epoxidation thanks to the electron donating phenyl groups.  相似文献   

7.
The epoxidation of ethene by a model for Compound I of cytochrome P450, studied by the use of density functional B3LYP calculations, involves two-state reactivity (TSR) with multiple electromer species, hence "multi-state epoxidation". The reaction is found to proceed in stepwise and effectively concerted manners. Several reactive states are involved; the reactant is an (oxo)iron(IV) porphyrin cation radical complex with two closely lying spin states (quartet and doublet), both of which react with ethene to form intermediate complexes with a covalent C-O bond and a carbon-centered radical (radical intermediates). The radical intermediates exist in two electromers that differ in the oxidation state of iron; Por(+)(*)Fe(III)OCH(2)CH(2)(*) and PorFe(IV)OCH(2)CH(2)(*) (Por = porphyrin). These radical intermediates exist in both the doublet- and quartet spin states. The quartet spin intermediates have substantial barriers for transformation to the quartet spin PorFe(III)-epoxide complex (2.3 kcal mol(-)(1) for PorFe(IV)OCH(2)CH(2)(*) and 7.2 kcal mol(-)(1) for Por(+)(*)Fe(III)OCH(2)CH(2)(*)). In contrast, the doublet spin radicals collapse to the corresponding PorFe(III)-epoxide complex with virtually no barriers. Consequently, the lifetimes of the radical intermediates are much longer on the quartet- than on the doublet spin surface. The loss of isomeric identity in the epoxide and rearrangements to other products arise therefore mostly, if not only, from the quartet process, while the doublet state epoxidation is effectively concerted (Scheme 7). Experimental trends are discussed in the light of the computed mechanistic scheme, and a comparison is made with closely related mechanistic schemes deduced from experiment.  相似文献   

8.
In 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as solvent, the epoxidation of olefins by hydrogen peroxide is accelerated up to ca. 100 000-fold (relative to that in 1,4-dioxane as solvent). The mechanistic basis of this effect was investigated kinetically and theoretically. The kinetics of the epoxidation of Z-cyclooctene provided evidence that higher-order solvent aggregates (rate order in HFIP ca. 3) are responsible for the rate acceleration. Activation parameters (DeltaS++ = -39 cal/mol.K) indicated a highly ordered transition state in the rate-determining step. In line with these findings, DFT simulations revealed a pronounced decrease of the activation barrier for oxygen transfer from H(2)O(2) to ethene with increasing number of (specifically) coordinated HFIP molecules. The oxygen transfer was unambiguously identified as a polar concerted process. Simulations (combined DFT and MP2) of the epoxidation of Z-butene were in excellent agreement with the experimental data obtained in the epoxidation of Z-cyclooctene (activation enthalpy, entropy, and kinetic rate order in HFIP of 3), supporting the validity of our mechanistic model.  相似文献   

9.
Experimental observations show that direct olefin epoxidation by H(2)O(2), which is extremely sluggish otherwise, occurs in fluorinated alcohol (R(f)OH) solutions under mild conditions requiring no additional catalysts. Theoretical calculations of ethene and propene epoxidation by H(2)O(2) in the gas phase and in the presence of methanol and of two fluorinated alcohols, presented in this paper, show that the fluoro alcohol itself acts as a catalyst for the reaction by providing a template that stabilizes specifically the transition state (TS) of the reaction. Thus, much like an enzyme, the fluoro alcohol provides a complementary charge template that leads to the reduction of the barrier by 5-8 kcal mol(-)(1). Additionally, the fluoro alcohol template keeps the departing OH and hydroxyalkenyl moieties in close proximity and, by polarizing them, facilitates the hydrogen migration from the latter to form water and the epoxide product. The reduced activation energy and structural confinement of the TS over the fluoro alcohol template render the epoxidation reaction observable under mild synthetic conditions.  相似文献   

10.
Electrospray ionization of aqueous silver nitrate is used for the preparation of the disilver-oxide cation Ag2O+ in the gas phase. The mass-selected cation is capable of activating C-H bonds of simple alkanes other than methane via H-atom abstraction, i.e., Ag2O+ + R-H --> Ag2OH+ + R* (R = C2H5, C3H7, C4H9). Clean O-atom transfer from Ag2O+ is observed with ethene as a neutral reagent, whereas oxygenation and allylic C-H abstraction compete in the case of propene. The gaseous Ag2O+ cation can thus be regarded as a minimalist model for the problems associated with the silver-mediated epoxidation of olefins more complex than ethene itself. The experimental findings are fully supported by the results of quantum chemical studies, thereby providing deep mechanistic insight into the reactions in the idealized gas phase, which also might have implications for further improvements in applied catalysis.  相似文献   

11.
The manganese(V) nitrido complex (PPh(4))(2)[Mn(N)(CN)(4)] is an active catalyst for alkene epoxidation and alcohol oxidation using H(2)O(2) as an oxidant. The catalytic oxidation is greatly enhanced by the addition of just one equivalent of acetic acid. The oxidation of ethene by this system has been studied computationally by the DFT method.  相似文献   

12.
Cooperativity between Br?nsted acidic defect sites on oxide surfaces and Lewis acid catalyst sites consisting of grafted calixarene-Ti(IV) complexes is investigated for controlling epoxidation catalysis. Materials are synthesized that, regardless of the surface or calixarene substituent, demonstrate nearly identical UV-visible ligand-to-metal charge-transfer bands and Ti K-edge X-ray absorption near edge spectral features consistent with site-isolated, coordinatively unsaturated Ti(IV) atoms. Despite similar Ti frontier orbital energies demonstrated by these spectra, replacing a homogeneous triphenylsilanol ligand with a silanol on a SiO2 surface increases cyclohexene epoxidation rates with tert-butyl hydroperoxide 20-fold per Ti site. Supporting calixarene-Ti active sites on fully hydroxylated Al2O3 or TiO2, which possess lower average surface hydroxyl pKa than that of SiO2, reduces catalytic rates 50-fold relative to SiO2. These effects are consistent with SiO2 surfaces balancing two competing factors that control epoxidation rates-equilibrated hydroperoxide binding at Ti, disfavored by stronger surface Br?nsted acidity, and rate-limiting oxygen transfer from this intermediate to alkenes, favored by strongly H-bonding intermediates. These observations also imply that Ti-OSi rather than Ti-OCalix bonds are broken upon hydroperoxide binding to Ti in kinetically relevant steps, which is verified by the lack of a calixarene upper-rim substituent effect on epoxidation rate. The pronounced sensitivity of observed epoxidation rates to the support oxide, in the absence of changes to the Ti coordination environment, provides experimental evidence for the importance of outer-sphere H-bonding interactions for the exceptional epoxidation reactivity of titanium silicalite and related catalysts.  相似文献   

13.
14.
The nature of some well known 2π + 2π cycloaddition reactions was studied by explicit construction of the quasiadiabatic potential-energy surfaces for the cycloaddition of ethene and various monosubstituted allylic cations. Such surfaces determined by ab initio MO computations are particularly suitable for analysis of symmetry selection rules. By examining the characteristics of such surfaces, we have studied the substituent effect and the role played by the positive charge in such systems. Qualitative discussion based on simplified MO, involving fewer electrons, is also given.  相似文献   

15.
The heterogeneously catalyzed epoxidation of alkenes is experimentally challenging, theoretically interesting, and technologically important. Although large-scale ethylene epoxidation is universally carried out with Ag catalysts, recent laboratory studies on single crystal surfaces show that Cu is intrinsically much more selective than Ag in the epoxidation of a variety of terminal alkenes. The reasons for this striking difference between Ag and Cu have been investigated by means of density functional theory. It is found that the fundamental cause is the inversion in the ordering of activation barriers for the competing pathways to epoxide formation versus acetaldehyde formation (the latter being the first step on the route to combustion). On Cu, epoxide formation is less activated than aldehyde formation; the opposite is true on Ag. This behavior is associated with a late transition state to epoxidation on Cu (i.e., product-like) compared to an early (reactant-like) transition state to epoxidation on Ag.  相似文献   

16.
初步研究了MycobacteriumE3的生长和产酶特性,利用MycobacteriumE3休止细胞催化烷羟化和烯烃环氧化,研究结果表明,烷烃不能被羟化,烯烃环氧化具有底物选择性,对烯丙基型底物XCH2CH=CH2(X=H,Cl,Br,OH)取代基大小显著性环氧化活性,MycobacteriumE3中烯烃单加氧酶和另一种结构未知的酶的存在导致烯烃环氧化过程中存在环氧化物的立体选择性形成和非立体选择  相似文献   

17.
Homogeneous catalysts based on metallocenes/methylaluminoxane are totally absorbed on surfaces of different metals. Because the methylaluminoxane is relatively stable against small molecules such as water covering metal surfaces, the aluminoxane can be fixed on powders without losing its activity. After treatment with the metallocene, active sites are only formed on the surface of the fillers. Upon injection of the olefins they are polymerized in the presence of the metals. Olefins such as ethene and propene, and cycloolefins or dienes, are used.  相似文献   

18.
The selective oxidation of styrene on clean and modified Ag(100) surfaces has been studied by synchrotron fast XPS and temperature-programmed reaction spectroscopy. By following the time dependence of surface species, it is unequivocally demonstrated that the necessary and sufficient conditions for epoxide formation are oxygen adatoms and pi-adsorbed alkene molecules. Increased oxygen coverage and coadsorbed Cs have pronounced and opposite effects on epoxidation selectivity, consistent with the view that the valence charge density on O(a) is pivotal in determining this property. Submonolayer quantities of Cs nitrate generated in situ open a new, low-temperature ultraselective, epoxidation pathway thought to involve direct oxygen transfer from the oxyanion to the alkene.  相似文献   

19.
The mechanism of M(II)-PNP-pincer catalyzed reaction between (i) ethene, (ii) trans-butene with 2-methylbut-2-ene, 2,3-dimethylbut-2-ene and tert-butylbutene is examined by using density functional theory methods (where M = Pt or Pd). All key intermediates and transition states involved in the reaction are precisely located on the respective potential energy surfaces using the popular DFT functionals such as mPW1K, M06-2X, and B3LYP in conjunction with the 6-31+G** basis set. The reaction between these olefins can lead to a linear coupling product or a substituted cyclopropane. The energetic comparison between coupling as well as cyclopropanation pathways involving four pairs of olefins for both platinum (1-4) and palladium (5-8) catalyzed reactions is performed. The key events in the lower energy pathway in the mechanistic course involves (i) a C-C bond formation between the metal bound olefin (ethene or trans-butene) and a free olefin, and (ii) two successive [1,2] hydrogen migrations in the ensuing carbocationic intermediates (1c-4c, and 1d-4d), toward the formation of the coupling product. The computed barriers for these steps in the reaction of metal bound ethene to free tert-butylbutene (or other butenes) are found to be much lower than the corresponding steps when trans-butene is bound to the metal pincer. The Gibbs free energy differences between the transition states leading to the coupling product (TS(d-e)) and that responsible for cyclopropanated product (TS(d-g)) are found to be diminishingly closer in the case of the platinum pincer as compared to that in the palladium system. The computed energetics indicate that the coupled product prefers to remain as a metal olefin complex, consistent with the earlier experimental reports.  相似文献   

20.
The addition of borylenes (RB) to prototypical carbon?carbon multiple bonds (ethyne, ethene) and the insertion into a C?H bond of methane involves weakly bound van der Waals complexes of the reaction partners according to computational chemistry methods. Geometries of all complexes were optimized using spin‐component scaled second‐order Møller–Plesset perturbation theory (SCS‐MP2) in combination with a quadruple‐ζ (def2‐QZVP) basis set. Energies were further refined using the coupled‐cluster (CCSD(T)) method in combination with basis sets up to quadruple‐ζ quality (def2‐QZVP and aug‐cc‐pVTZ). All of the complexes of borylenes studied correspond to shallow minima on their potential‐energy surfaces. Borylene complexes with ethyne are the most stable and those with methane are the least stable ones. Aminoborylene complexes BNHR with ethyne and ethene are stabilized mainly by NH ??? π interactions. Symmetry‐adapted perturbation theory (SAPT) was performed to analyze the nature of the interaction between borylene molecules and hydrocarbons. Most of the ethyne complexes are dominated by electrostatic interactions, whereas for most of the ethene and all of the methane complexes the interaction is mainly dispersive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号