首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the structure of the title complex, [Cu(C2O4)(C10H9N3)(H2O)]·H2O, the CuII atom displays a square‐pyramidal geometry, being coordinated by two N atoms from the di‐2‐pyridylamine ligand, two O atoms from the oxalate group and one O atom of a water mol­ecule. The complex mol­ecules are linked to form a three‐dimensional supra­molecular array by hydrogen‐bonding inter­actions between coordinated/uncoordinated water mol­ecules and the uncoordinated oxalate O atoms of neighboring mol­ecules.  相似文献   

2.
The side chains of l ‐alanyl‐l ‐me­thionine hemihydrate, C8H16N2O3S·0.5H2O, form hydro­phobic columns within a three‐dimensional hydrogen‐bond network that includes extended polymers of cocrystallized water mol­ecules and Cα—H⋯S interactions.  相似文献   

3.
The title complex, 2CH4N2S·C4H6O4, is a host–guest system. The asymmetric unit consists of one complete thio­urea mol­ecule and one‐half of a dimethyl oxalate mol­ecule lying on an inversion centre. The host thio­urea mol­ecules are connected to form zigzag chains by N—H⋯S hydrogen bonds. The guest dimethyl oxalate mol­ecules provide O‐atom acceptors for N—H⋯O hydrogen bonds, thus inter­connecting the chains of thio­urea mol­ecules to form completely connected sheets. The reduction in temperature from 300 to 100 K leaves the structure unchanged and still isostructural with that previously determined for the analogous thio­urea–diethyl oxalate (2/1) complex. It does, however, induce closer packing of the mol­ecules, general shrinkage of the unit cell and shortening of the hydrogen bonds, these last two to the extent of 1–2%.  相似文献   

4.
The Zn atom in dichloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)­methane]zinc(II), [ZnCl2(C11H16N4)], (I), is tetra­hedrally coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand and two terminal Cl atoms. The mol­ecule has no crystallographic symmetry. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazol­yl)methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to yield inter­molecular C—H⋯Cl contacts, thereby forming a one‐dimensional zigzag chain extending along the b axis. On the other hand, in di‐μ‐chloro‐bis­{chloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methane]cadmium(II)}, [Cd2Cl4(C11H16N4)2], (II), each of the two crystallographically equivalent Cd atoms is penta­coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand, and by one terminal and two bridging Cl anions. The mol­ecule has a crystallographic centre of symmetry located at the mid‐point of the Cd⋯Cd line. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazolyl)­methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to produce pairwise inter­molecular C—H⋯Cl contacts, thereby affording chains of mol­ecules running along the c axis.  相似文献   

5.
The title compound, [CuCl(CH4N2S)2]·2C11H6N2O·H2O, consists of mol­ecules of a CuI–thio­urea complex, free 4,5‐di­aza­fluoren‐9‐one (dafone) and crystalline water. The planar complex mol­ecule has trigonal coordination geometry around the CuI atom. The dafone and water mol­ecules, which are hydrogen bonded to the CuI complex, are approximately coplanar with this complex. The crystal displays a sheet structure and π–π stacking is observed between neighbouring sheets.  相似文献   

6.
The title copper complex, [Cu(dl ‐DAP)2(H2O)2]·2H2O or [Cu(C3H7N2O2)2(H2O)2]·2H2O, prepared from the non‐protein amino acid dl ‐2,3‐di­amino­propionic acid (dl ‐HDAP), has a center of symmetry and a distorted octahedral coordination, with four N atoms in equatorial positions and two water mol­ecules in apical sites. The water mol­ecule of crystallization is hydrogen bonded to the deprotonated carboxyl­ate group of the ligand.  相似文献   

7.
2,3,6,7‐Tetra­hydroxy‐9,10‐di­methyl‐9,10‐di­hydro‐9,10‐ethano­anthracene crystallizes with 1,4‐dioxane to give a bis‐solvate, C18H18O4·2C4H8O2. The bis­(catechol) mol­ecule is located on a twofold axis and the two aromatic rings form a dihedral angle of 130.61 (4)°. Hydro­gen bonds are formed between the hydroxyl groups and either a neighbouring bis­(catechol) mol­ecule or the ether‐O atom of a dioxane mol­ecule.  相似文献   

8.
The title compound, C19H19N2OS+·Br?·0.5C3H7NO, is an oxygen‐bridged phenyl­pyrimidine derivative in which the heterocyclic ring is protonated, the positive charge being dispersed over both of the N atoms. Both mol­ecules in the asymmetric unit exist in an identical conformation, which consists of a central planar portion with the two terminal phenyl rings protruding from the same side of the plane. One of the independent mol­ecules forms a strong hydrogen bond with the bromide anion, while the other is hydrogen bonded to the di­methyl­form­amide solvent mol­ecule.  相似文献   

9.
The structure of glycyl‐dl ‐leucine, C8H16N2O3, has been determined at 120 K by single‐crystal X‐ray diffraction. In addition to three N—H?O‐type hydrogen bonds of the positively charged RNH3+ group of the zwitterionic mol­ecule, an intermolecular N—H?O contact exists between the peptide bond and the carboxyl­ate group. Four hydrogen‐bond cycles were identified, giving a complex pattern.  相似文献   

10.
The title mononuclear complex, [Cu(CO3)(C8H7N5)(H2O)]·2H2O, was obtained by fixation of CO2 by a mixture of copper(II) tetra­fluoro­borate and the ligand bis­(pyrimidin‐2‐yl)­amine in ethanol/water. The CuII ion of the complex has a distorted square‐pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water mol­ecule. In the solid state, hydrogen‐bonding interactions are dominant, the most unusual being the Watson–Crick‐type coplanar ligand pairing through two N—H?N bonds. Lattice water mol­ecules also participate in hydrogen bonding.  相似文献   

11.
The title compound, C9H8FN5·C3H7NO, contains two independent complexes in the asymmetric unit, each consisting of one 3,5‐di­amino‐6‐(2‐fluoro­phenyl)‐1,2,4‐triazine mol­ecule and one di­methyl­form­amide solvent mol­ecule. One triazine mol­ecule is disordered over two conformations within the crystal, the occupancies being 62 (1) and 38 (1)%. The phenyl ring of this mol­ecule resolves into two conformations rotated by almost 180° about the bridging bond between the two rings, while the triazine rings approximately superimpose on each other. The triazine mol­ecules of the asymmetric unit differ in the dihedral angles between their respective phenyl and triazine ring planes, these being 57.6 (2)° for the fully occupied, and 76.9 (6) and 106.8 (8)° for the partially occupied mol­ecules. An extensive network of hydrogen bonds maintains the crystal structure.  相似文献   

12.
In the title compound, 2C10H15N5O4·0.5H2O, there are two independent mol­ecules of the pyrimidinyl­isoleucine in general positions and a water mol­ecule lying on a twofold rotation axis. The bond lengths within the organic moieties demonstrate significant polarization of the electronic structure. Each of the organic mol­ecules participates in 12 intermolecular hydrogen bonds, of O—H?O and N—H?O types, while the water mol­ecule acts as a double donor and as a double acceptor of O—H?O hydrogen bonds. The organic components are linked by the hydrogen bonds into a single three‐dimensional framework, reinforced by the water mol­ecules.  相似文献   

13.
The title monohydrate, C7H10O3·H2O, aggregates as a complex hydrogen‐bonding network, in which the water mol­ecule accepts a hydrogen bond from the carboxyl group of one mol­ecule and donates hydrogen bonds to ketone and carboxyl Czdbnd;O functions in two additional mol­ecules, yielding a sheet‐like structure of parallel ribbons. The keto acid adopts a chiral conformation through rotation of the carboxyl group by 62.50 (15)° relative to the plane defined by its point of attachment and the ketone C and O atoms. Two C—H⋯O close contacts exist in the structure.  相似文献   

14.
In the title salt, 1,3‐bis­{[2‐(2‐pyridinio)eth­yl][2‐(2‐pyrid­yl)ethyl]amino}benzene diperchlorate dihydrate, C34H38N62+·2ClO4·2H2O, the cation contains two ethyl­pyrid­yl and two ethyl­pyridinium pendant pairs anchored to the two N atoms of 1,3‐phenyl­enediamine. The pyrid­yl and pyridinium N atoms are flanked by a mol­ecule of water through strong hydrogen‐bonding inter­actions [N—H⋯O = 2.762 (6) and 2.758 (6) Å, and O—H⋯N = 2.834 (6) and 2.839 (6) Å]. The water mol­ecules have weak hydrogen‐bonding inter­actions with the perchlorate anions as well. One of the perchlorate anions is severely disordered.  相似文献   

15.
In the title 2:1 salt, 2C2H6NO2+·C2O42−, the glycine mol­ecule is in the cationic form with a positively charged amino group and an uncharged carboxylic acid group. The doubly charged oxalate anion lies across a crystallographic inversion centre. One of the reasons why the 1:1 glycinium oxalate salt has a higher melting point than the title compound may be the difference in their hydrogen‐bonding patterns. A database search for salts formed between amino acids or substituted amino acids and oxalic acid revealed that, in most of the structures, the conformation about the O=C—OH bond is synplanar. d ‐Tryptophan oxalate is the only example where the OH group of a semi‐oxalate adopts an anti­planar conformation. The 2:1 stoichiometry seen in the present salt is observed only in the salts of dl ‐serine, dl ‐aspartic acid and betaine with oxalic acid.  相似文献   

16.
At 160 K, the gluco­pyran­osyl ring in 1,6‐di­chloro‐1,6‐di­deoxy‐β‐d ‐fructo­furan­osyl 4‐chloro‐4‐deoxy‐α‐d ‐gluco­pyran­oside monohydrate, C12H19Cl3O8·H2O, has a near ideal 4C1 chair conformation, while the fructo­furan­osyl ring has a 4T3 conformation. The conformation of the sugar mol­ecule is quite different to that of sucralose, particularly in the conformation about the glycosidic linkage, which affects the observed pattern of intramolecular hydrogen bonds. A complex series of intermolecular hydrogen bonds links the sugar and water mol­ecules into an infinite three‐dimensional framework.  相似文献   

17.
The crystal structure of N‐(l ‐2‐amino­butyryl)‐l ‐alanine, C7H14N2O3, is closely related to the structure of l ‐alanyl‐l ‐alanine, both being tetragonal, while the retro‐analogue 2‐(l ‐alanyl­amino)‐l ‐butyric acid 0.33‐hydrate, C7H14N2O3·­0.33H2O, forms a new type of molecular columnar structure with three peptide mol­ecules in the asymmetric unit.  相似文献   

18.
The title compound, [HgBr(C7H4NO4)(H2O)], was obtained by the reaction of an aqueous solution of mercury(II) bromide and pyridine‐2,6‐di­carboxylic acid (picolinic acid, dipicH2). The shortest bond distances to Hg are Hg—Br 2.412 (1) Å and Hg—N 2.208 (5) Å; the corresponding N—Hg—Br angle of 169.6 (1)° corresponds to a slightly distorted linear coordination. There are also four longer Hg—O interactions, three from dipicH? [2.425 (4) and 2.599 (4) Å within the asymmetric unit, and 2.837 (4) Å from a symmetry‐related mol­ecule] and one from the bonded water mol­ecule [2.634 (4) Å]. The effective coordination of Hg can thus be described as 2+4. The mol­ecules are connected to form double‐layer chains parallel to the y axis by strong O—H?O hydrogen bonds between carboxylic acid groups of neighbouring mol­ecules, and by weaker hydrogen bonds involving both H atoms of the water mol­ecule and the O atoms of the carboxylic acid groups.  相似文献   

19.
Crystals of 2,4,6‐triamino‐1,3,5‐triazine‐1,3‐dium bis­(trifluoro­acetate) trihydrate, C3H8N62+·2CF3COO·3H2O, and 2,4,6‐triamino‐1,3,5‐triazine‐1,3‐dium bis­(trichloro­acetate) dihydrate, C3H8N62+·2CCl3COO·2H2O, both contain doubly protonated melamine rings that lie on crystallographic twofold axes. In the former structure, one water mol­ecule also lies on a twofold axis. While the trifluoro­acetate compound crystallizes in a centrosymmetric space group, the trichloro­acetate is non‐centrosymmetric, so it is useful as a material for non‐linear optics. The efficiency of second harmonic generation is about three times greater than that of KDP (KH2PO4). A combination of ionic and donor–acceptor hydrogen‐bond inter­actions link the melaminium(2+) residues with trifluoro­acetate or trichloro­acetate ions and water mol­ecules to form a three‐dimensional network.  相似文献   

20.
The title compound, stigmasta‐5,22‐dien‐3β‐ol hemihydrate, C29H48O·0.5H2O, previously thought to be the monohydrate, has two sterol mol­ecules and one water mol­ecule in the asymmetric unit. In both sterol mol­ecules, the methyl group of the ethyl substituent at the end of the hydro­carbon chain is disordered over two sites. The OH group of mol­ecule A donates a hydrogen bond to a water mol­ecule and accepts a hydrogen bond from the OH group of mol­ecule B. The OH group of mol­ecule B accepts two hydrogen bonds from water mol­ecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号