首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The molecules of 8‐methyl‐7,10‐diphenyl‐5H‐benzo[h]pyrazolo[3,4‐b]quinoline‐5,6(10H)‐dione, C27H17N3O2, (I), are weakly linked into chains by a single C—H...O hydrogen bond, and these chains are linked into sheets by a π–π stacking interaction involving pyridyl and aryl rings. In 8‐methyl‐7‐(4‐methylphenyl)‐10‐phenyl‐5H‐benzo[h]pyrazolo[3,4‐b]quinoline‐5,6(10H)‐dione, C28H19N3O2, (II), the molecules are linked into a three‐dimensional framework structure by a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds, together with a π–π stacking interaction analogous to that in (I).  相似文献   

2.
A regioselective synthesis of novel pyrazolo[1,5‐a]pyrimidines, pyrazolo[1,5‐a]quinazoline and pyrimido[4′,5′:3,4]pyrazolo[1,5‐a]pyrimidines incorporating a thiazole moiety was described via the reactions of the versatile, readily accessible 5‐amino‐3‐(phenylamino)‐N‐(4‐phenylthiazol‐2‐yl)‐1H‐pyrazole‐4‐carboxamide 3 with appropriate 1,3‐biselectrophilic reagents namely, β‐diketones, enaminones, and α,β‐unsaturated cyclic ketone. The newly synthesized compounds were elucidated by elemental analysis, spectral data, and alternative synthetic route whenever possible.  相似文献   

3.
The supramolecular structures of the title compounds, 2‐phenyl‐5‐p‐tolyl‐1,5,6,10b‐tetra­hydro­pyrazolo­[1,5‐c]quinazoline, C23H21N3, (I), 5‐(4‐bromo­phenyl)‐2‐phenyl‐1,5,6,10b‐tetra­hydro­pyrazolo­[1,5‐c]­quinazoline, C22H18BrN3, (II), 2‐(4‐chlorophenyl)‐5‐phenyl‐1,5,6,10b‐tetrahydropyrazolo[1,5‐c]quinazoline, C22H18ClN3, (III), and 5‐(4‐bromo­phenyl)‐2‐(4‐chlorophenyl)‐1,5,6,10b‐tetrahydropyrazolo[1,5‐c]quinazoline, C22H17BrClN3, (IV), are of two general types. Compounds (I), (II) and (III) form base‐paired dimers via N—H?N hydrogen bonds, where (I) and (II) are isomorphous, while in (IV), there are no conventional hydrogen bonds.  相似文献   

4.
The molecular dimensions of 2‐ethylsulfanyl‐7‐(4‐methylphenyl)‐4‐phenylpyrazolo[1,5‐a][1,3,5]triazine, C20H18N4S, (I), 7‐(4‐chlorophenyl)‐2‐ethylsulfanyl‐4‐phenylpyrazolo[1,5‐a][1,3,5]triazine, C19H15ClN4S, (II), and 4,7‐bis(4‐chlorophenyl)‐2‐(ethylsulfanyl)pyrazolo[1,5‐a][1,3,5]triazine, C19H14Cl2N4S, (III), show evidence for some aromatic delocalization in the pyrazole rings. The conformations adopted by the ethylsulfanyl substituents are different in all three compounds. There are no hydrogen bonds in any of the crystal structures, but pairs of molecules in (II) and (III) are linked into centrosymmetric dimers by π‐stacking interactions.  相似文献   

5.
This paper describes the preparation of some pyrazolo[1,5‐a]‐, 1,2,4‐triazolo[1,5‐a]‐ and imidazo[1,2‐a]‐pyrimidines substituted on the pyrimidine moiety by a 4‐[(N‐acetyl‐N‐ethyl)amino]phenyl group. A new synthesis of related benzo[h]pyrazolo[1,5‐a]‐, benzo[h]pyrazolo[5,1‐b]‐ and benzo[h]1,2,4‐triazolo[1,5‐a]‐quinazolines is also reported.  相似文献   

6.
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions.  相似文献   

7.
Both 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methylphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile and 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methoxyphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile crystallize from dimethylformamide solutions as stoichiometric 1:1 solvates, viz. C29H21N5·C3H7NO, (I), and C29H21N5O·C3H7NO, (II), respectively; however, 6‐(1H‐indol‐3‐yl)‐3‐methyl‐1‐phenyl‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile, C31H25N5O3, (III), crystallizes in the unsolvated form. The heterocyclic components of (I) are linked by C—H...π(arene) hydrogen bonds to form cyclic centrosymmetric dimers, from which the solvent molecules are pendent, linked by N—H...O hydrogen bonds. In (II), the heterocyclic components are linked by a combination of C—H...N and C—H...π(arene) hydrogen bonds into chains containing two types of centrosymmetric ring, and the pendent solvent molecules are linked to these chains by N—H...O hydrogen bonds. Molecules of (III) are linked into simple C(12) chains by an N—H...O hydrogen bond, and these chains are weakly linked into pairs by an aromatic π–π stacking interaction.  相似文献   

8.
In the title compound, C14H19N3, the bond distances within the heterocyclic portion of the molecule indicate incomplete π delocalization. The molecules are linked into stacks by a combination of two C—H...π(pyrazole) hydrogen bonds and two independent π–π stacking interactions between inversion‐related pyrimidine rings. The significance of this study lies in its observation of significant differences in both molecular conformation and supramolecular aggregation between the title compound, an example of a 2‐alkylpyrazolo[1,5‐a]pyrimidine, and some analogous 2‐arylpyrazolo[1,5‐a]pyrimidines.  相似文献   

9.
3‐tert‐Butyl‐7‐(4‐methoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H37N3O3, (I), 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C32H39N3O4, (II), 3‐tert‐butyl‐4′,4′‐dimethyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H35N3O4, (III), and 3‐tert‐butyl‐4′,4′‐dimethyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione ethanol 0.67‐solvate, C33H41N3O5·0.67C2H6O, (IV), all contain reduced pyridine rings having half‐chair conformations. The molecules of (I) and (II) are linked into centrosymmetric dimers and simple chains, respectively, by C—H...O hydrogen bonds, augmented only in (I) by a C—H...π hydrogen bond. The molecules of (III) are linked by a combination of C—H...O and C—H...π hydrogen bonds into a chain of edge‐fused centrosymmetric rings, further linked by weak hydrogen bonds into supramolecular arrays in two or three dimensions. The heterocyclic molecules in (IV) are linked by two independent C—H...O hydrogen bonds into sheets, from which the partial‐occupancy ethanol molecules are pendent. The significance of this study lies in its finding of a very wide range of supramolecular aggregation modes dependent on rather modest changes in the peripheral substituents remote from the main hydrogen‐bond acceptor sites.  相似文献   

10.
7‐Benzyl‐3‐tert‐butyl‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H25N3O, (I), and 3‐tert‐butyl‐7‐(4‐methylbenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O, (II), are isomorphous in the space group P21, and molecules are linked into chains by C—H...O hydrogen bonds. In each of 3‐tert‐butyl‐7‐(4‐methoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O2, (III), which has cell dimensions rather similar to those of (I) and (II), also in P21, and 3‐tert‐butyl‐1‐phenyl‐7‐[4‐(trifluoromethyl)benzyl]‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H24F3N3O, (IV), there are no direction‐specific interactions between the molecules. In 3‐tert‐butyl‐7‐(4‐nitrobenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H24N4O3, (V), a combination of C—H...O and C—H...N hydrogen bonds links the molecules into complex sheets. There are no direction‐specific interactions between the molecules of 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C24H29N3O3, (VI), but a three‐dimensional framework is formed in 3‐tert‐butyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H25N3O3, (VII), by a combination of C—H...O, C—H...N and C—H...π(arene) hydrogen bonds, while a combination of C—H...O and C—H...π(arene) hydrogen bonds links the molecules of 3‐tert‐butyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C25H31N3O4, (VIII), into complex sheets. In each compound, the oxazine ring adopts a half‐chair conformation, while the orientations of the pendent phenyl and tert‐butyl substituents relative to the pyrazolo[3,4‐d]oxazine unit are all very similar.  相似文献   

11.
Six closely related pyrazolo[3,4‐b]pyridine derivatives, namely 6‐chloro‐3‐methyl‐1,4‐diphenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C20H14ClN3O, (I), 6‐chloro‐3‐methyl‐4‐(4‐methylphenyl)‐1‐phenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C21H16ClN3O, (II), 6‐chloro‐4‐(4‐chlorophenyl)‐3‐methyl‐1‐phenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C20H13Cl2N3O, (III), 4‐(4‐bromophenyl)‐6‐chloro‐3‐methyl‐1‐phenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C20H13BrClN3O, (IV), 6‐chloro‐4‐(4‐methoxyphenyl)‐3‐methyl‐1‐phenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C21H16ClN3O2, (V), and 6‐chloro‐3‐methyl‐4‐(4‐nitrophenyl)‐1‐phenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C20H13ClN4O3, (VI), which differ only in the identity of a single small substituent on one of the aryl rings, crystallize in four different space groups spanning three crystal systems. The molecules of (I) are linked into a chain of rings by a combination of C—H...N and C—H...π(arene) hydrogen bonds; those of (II), (IV) and (V), which all crystallize in the space group P, are each linked by two independent C—H...O hydrogen bonds to form chains of edge‐fused rings running in different directions through the three unit cells; the molecules of (III) are linked into complex sheets by a combination of two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond; finally, the molecules of (VI) are linked by a single C—H...O hydrogen bond to form a simple chain.  相似文献   

12.
Pyrazolo[1,5‐c]quinazolines are fused‐quinazoline derivatives which have been reported as potential agents against neurological disorders. The normal synthesis routes to these compounds require harsh reaction conditions, long reaction times or multistep sequences. The title compound, C18H15N3S, has been prepared under very mild conditions by condensation of thiochroman‐4‐one with 5‐(2‐aminophenyl)‐1H‐pyrazole, which had itself been prepared by the reaction of hydrazine hydrate with 4‐hydroxyquinoline mediated by a brief period of microwave heating. Within the molecule in the crystal structure, the reduced pyrimidine ring adopts an envelope conformation, whereas the thiane ring adopts a half‐chair conformation. Molecules are linked into sheets by a combination of one N—H...S hydrogen bond and two independent C—H...π(arene) hydrogen bonds, which utilize the same aryl ring as the acceptor, with one C—H bond donating to each face of the ring. Comparisons are made with some related compounds.  相似文献   

13.
The molecular structure of 7‐amino‐2‐methylsulfanyl‐1,2,4‐triazolo[1,5‐a]pyrimidine‐6‐carboxylic acid is reported in two crystal environments, viz. as the dimethylformamide (DMF) monosolvate, C7H7N5O2S·C3H7NO, (I), and as the monohydrate, C7H7N5O2S·H2O, (II), both at 293 (2) K. The triazolo[1,5‐a]pyrimidine molecule is of interest with respect to the possible biological activity of its coordination compounds. While the DMF solvate exhibits a layered structural arrangement through N...O hydrogen‐bonding interactions, the monohydrate displays a network of intermolecular O...O and N...O hydrogen bonds assisted by cocrystallized water molecules and weak π–π stacking interactions, leading to a different three‐dimensional supramolecular architecture. Based on results from topological analyses of the electron‐density distribution in X—H...O (X = O, N and C) regions, hydrogen‐bonding energies have been estimated from structural information only, enabling the characterization of hydrogen‐bond graph energies.  相似文献   

14.
In the molecules of both methyl (1RS,3SR,3aRS,6aSR)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxo‐5‐phenyloctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H24N4O4, (I), and methyl (1RS,3SR,3aRS,6aSR)‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxooctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H23ClN4O4, (II), the two rings of the pyrrolopyrrole fragment are both nonplanar, with conformations close to half‐chair forms. The overall conformations of the molecules of (I) and (II) are very similar, apart from the orientation of the ester function. The molecules of (I) are linked into sheets by a combination of an N—H...π(pyrrole) hydrogen bond and three independent C—H...O hydrogen bonds. The molecules of (II) are also linked into sheets, which are generated by a combination of an N—H...N hydrogen bond and two independent C—H...O hydrogen bonds, weakly augmented by a C—H...π(arene) hydrogen bond.  相似文献   

15.
In the molecule of 4‐(2‐chlorophenyl)pyrrolo[1,2‐a]quinoxaline, C17H11ClN2, (I), the bond lengths are consistent with electron delocalization in the two outer rings of the fused tricyclic system, with a localized double bond in the central ring. The molecules of (I) are linked into chains by a π–π stacking interaction. In (4RS)‐4‐(1,3‐benzodioxol‐6‐yl)‐4,5‐dihydropyrrolo[1,2‐a]quinoxaline, C18H14N2O2, (II), the central ring of the fused tricyclic system adopts a conformation intermediate between screw‐boat and half‐chair forms. A combination of N—H...O and C—H...π(arene) hydrogen bonds links the molecules of (II) into a sheet. Comparisons are made with related compounds.  相似文献   

16.
The supramolecular structures of the isomeric compounds 5,7‐di­methoxy­imidazo­[1,2‐c]­pyrimidine, C8H9N3O2, (I), and 7‐methoxy‐1‐methyl­imidazo­[1,2‐a]­pyrimidin‐5(1H)‐one, C8H9N3O2, (II), are determined by weak C—H⃛N and C—H⃛O hydrogen bonds in (I), which generate alternating linked centrosymmetric R(8) and R(10) rings that form a ribbon running parallel to the c axis, and by C—H⃛O bonds in (II), which link the mol­ecules into sheets comprising centro­symmetric R(10) and R(22) rings.  相似文献   

17.
This study characterizes the supramolecular synthons that dominate the intermolecular organization of the title compounds, namely dichloridobis(dipyrido[f,h]quinoxaline‐6,7‐dicarbonitrile)zinc(II), [ZnCl2(C16H6N6)2], (I), and tetrachlorido(dipyrido[f,h]quinoxaline‐6,7‐dicarbonitrile)tin(IV), [SnCl4(C16H6N6)], (II), in their respective crystal structures. Molecules of (I) are located on 2b axes of rotational symmetry. Their crystal packing is stabilized mostly by π–π stacking and dipole–dipole attractions between the organic ligand fragments of inversion‐related neighbouring species, as well as by weak intermolecular C—H...N hydrogen bonds. On the other hand, Cl...π and N...π interactions seem to direct the crystal packing in (II), which is unusual in the sense that its aromatic fragments are not involved in π–π stacking. Molecules of (II) are located on mb planes of mirror symmetry. This study confirms the diverse structural chemistry of this organic ligand, which can be involved in a wide range of supramolecular interactions. These include effective coordination to various metal ions via the phenathroline N‐atom sites, π–π stacking and π...halogen contacts through its extended π‐system, and hydrogen bonding and N...π interactions through its nitrile groups. The competing natures of the latter make it difficult to predict a priori the preferred supramolecular motif that may form in a given structure.  相似文献   

18.
While 3(5)‐aminopyrazole reacts with enaminonitrile to yield pyrazolo[1,5‐a]pyrimidines, 3‐amino‐5‐pyrazolone reacts with the same reagents to yields pyrazolo[3,4‐b]pyridines.  相似文献   

19.
In the structures of the title compounds, 6,7‐di­hydro­dibenzo[e,g]­azulen‐8(5H)‐one, C18H14O, (I), and 12,13‐di­hydro­benzo[e]­napth­[2,1‐g]­azulen‐14(11H)‐one, C22H16O, (II), the azulene group is in a boat‐envelope conformation. The structures are stabilized by weak C—H?O interactions.  相似文献   

20.
A simple and effective two‐step approach to tricyclic pyrimidine‐fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)‐8‐chloro‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indole, C15H14ClN3, (I), the five‐membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)‐9‐chloro‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinoline, C16H16ClN3, (II). However, the seven‐membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi‐axial site in (I) but a quasi‐equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to form C(5) chains and inversion‐related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号