首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A high efficiency, high beam quality diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with six amplifier stages is demonstrated. The oscillator with two-rod birefringence compensation was designed as a thermally determined near hemispherical resonator, which presents a pulse energy of 223 mJ with a beam quality value of M2 = 1.29 at a repetition rate of 108 Hz. The MOPA system delivers a pulse energy of 5.1 J with a pulse width of 230 μs, a M2 factor of 3.6 and an optical-to-optical efficiency of 38.5%. To the best of our knowledge, this is the highest pulse energy for a diode-pumped Nd:YAG rod laser operation with a high beam quality and a pulse width of hundreds of microseconds at a repetition rate of over 100 Hz.  相似文献   

2.
We report the operation of a Ti:sapphire oscillator-amplifier system with a high, variable repetition rate adjustable between 1 and 15 kHz. The oscillator uses cavity dumping and the multipass amplifier is based on a liquid nitrogen cooled crystal. The system produces pulses with 28 fs duration at 1.1 mJ pulse energy. When pumping the amplifier crystal with 72 W, an average output power of 11 W is obtained at a repetition rate of 10 kHz, resulting in a quantum efficiency of 25%. The output pulses are used to generate high harmonic radiation in argon, neon, and helium, which are detected up to a photon energy of 110 eV, limited by the sensitivity of the toroidal grating employed.  相似文献   

3.
In this paper, a flash-lamp pumped 1.3414 μm Nd:YAP Q-switched pulse laser are presented. The experimental results for about 45 ns of pulse duration and more than 300 mJ of output energy have been obtained and discussed.  相似文献   

4.
An end pumped Nd:YAP laser at 1341 nm is actively mode locked and passively Q-switched. Pumping was done with a pulsed high power laser diode with maximum power 425 W. V3+:YAG with 61% initial transmission served as saturable absorber, and an acousto-optic modulator is used for active mode locking. The output pulse train with 69 ns duration has a total energy of 3.2 mJ with ±4% shot-to-shot fluctuation. The peak output energy of a single mode locked pulse is 0.25 mJ. The pulse duration of a single mode locked pulse is less than 800 ps. The output laser beam is nearly diffraction limited with 1.6 mm diameter, and beam propagation factor M2 about 1.3.  相似文献   

5.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

6.
LD side-pumped dual interconnected V-type quasi-continuous wave green laser has been demonstrated. The two Nd:YAG modules were placed in a plane-concave V-type resonator and a plane-concave straight cavity formed two stable operation beam of the 1064-nm fundamental frequency laser. Through acousto-optic Q-switched and frequency doubling crystal, two double-frequency laser beams arrived at the folded flat mirror, which were unidirectional output by the folded flat mirror at the end. As the pumped current was 50 A, the 532 nm green laser maximum average output power of 206 W at a repetition of 22.4 kHz was achieved with a pulse width of 201 ns and the largest single pulse energy of 9.2 mJ, corresponding to a peak power of 45.8 kW and a double frequency efficiency of 60.2%.  相似文献   

7.
We present an all solid-state Yb:S-FAP laser system running on the three-level laser transition at 985 nm. The pump source was a high fill-factor laser diode bar, with the output reformatted using a two-mirror beamshaping system to produce a rectangular pump beam that focused to a square spot. A nearly on-axis multipassing system was used to obtain four pump passes through a 1.6 mm Yb:S-FAP laser crystal. Gain-switched three-level laser output was achieved with an efficiency of 4.3% with respect to incident pump power. Electro-optic Q-switching produced 0.12 mJ pulses for a pump pulse energy of 11 mJ. Intra-cavity second-harmonic generation yielded a maximum pulse energy at 492.5 nm of 12 μJ.  相似文献   

8.
We present a diode-pumped, chirped-pulse Yb:S-FAP regenerative amplifier. This regenerative amplifier was developed as a first amplifier in an all-solid-state Yb:S-FAP laser system for laser-Compton X-ray generation. The amplifier delivers pulse energies above 24 mJ at a repetition rate of 50 Hz. Pulse compression reduces pulse widths to approximately 2.0 ps.  相似文献   

9.
We demonstrate and optimize, for a mJ/ns release at the wavelength 1.064 μm, the operation of a compact laser system designed in the form of a hybrid, active-passive, Q-switched Nd3+:YAG/Cr4+:YAG microchip laser seeding an Yb-doped specialty multi-port fiber amplifier. As the result of the amplifier optimization, ∼1 mJ, ∼1 ns, almost single-mode pulses at a 1-10-kHz repetition rate are achieved, given by a gain factor of ∼19 dB for an 11-μJ input from the microchip laser. Meanwhile, a lower pulse energy, ∼120 μJ, but a much higher gain (∼25 dB) are eligible for the less powerful (0.35 μJ) input pulses.  相似文献   

10.
We report on a scheme for efficient acousto-optical Q-switching. A flash lamp pumped Nd:YAG oscillator with an acousto-optic modulator (AOM) fourfold pass configuration is presented. The setup combines two important advantages: enhancement of the diffraction efficiency by additional AOM passes and a compact oscillator design in spite of an extension of the optical path length. A flash lamp pumped oscillator with an average output power of 7 W and a beam quality of M2 = 1.2 is developed. The system operates with a 100 Hz repetition rate for the flash lamps. In each pumping pulse a pulse train of 1 up to 40 Q-switched laser pulses is generated. The pulse duration is from 15 to 120 ns. In comparison to a former setup (AOM double pass) the AOM fourfold pass configuration allows single pulses with energy above 20 mJ and a pulse peak power of more than 1 MW. In addition, the beam profile is improved due to a better separation of the incident and diffracted beam caused by the AOM. The laser is dedicated as master oscillator in a master oscillator power amplifier (MOPA) system where pulse peak powers in the MW range should be achieved.  相似文献   

11.
We propose double pass fiber Raman amplifier schemes based on Raman fiber oscillator in order to amplify optical signal with wavelengths from 1610 to 1650 nm efficiently. We experimentally demonstrate that the proposed double pass amplifier scheme has enhanced gain characteristics compared to a conventional single pass scheme. We also demonstrate a scheme for the proposed double pass amplifier to have small gain variation over the wavelength range by using two fiber Bragg gratings with different center wavelengths.  相似文献   

12.
We describe a tunable Ti:Sapphire regenerative amplifier which is used to amplify 120 fs pulses from a self-mode-locked Ti:Sapphire laser to energies in the range of 7–12 mJ from 760 nm to 855 nm. We have used three sets of cavity mirrors in the regenerative amplifier to vary the output wavelength of the laser.On leave from Institute of Laser Engineering, Osaka University, 2-6, Yamada-oka, Osaka 565, Japan (Fax: +81-6/877-4799)  相似文献   

13.
要建造大功率超强激光系统,必须将nJ量级的种子进行放大,以得到mJ量级以及更高能量的激光输出.为达到这个目的,必须使种子能量指数增加,再生腔放大器是实现这一目的的良好途径;同时,为了得到更稳定的激光输出,须采用高重复频率的泵浦源.为此,设计了一种kHz重复频率激光泵浦的再生放大器,使用15 mJ的527 nm的绿光泵浦,得到了约2.3 mJ的800 nm放大激光输出,同时,对其输出激光的光谱特性进行了测量,将带宽为40 nm的种子注入后,得到了光谱带宽约为30 nm激光输出.  相似文献   

14.
We demonstrate a passively Q-switched Nd:LuVO4 laser at 916 nm by using a Nd, Cr:YAG crystal as the saturable absorber. As we know, it is the first time to realize the laser with a simple linear resonator. When the incident pump power increased from 14.6 W to 23.7 W, the pulse width of the Q-switched laser decreased from 24 ns to 21 ns. The pulse width was insensitive to the incident pump power in the experiment. The average output power of 288 mW with repetition rate of 39 kHz was obtained at an incident pump power of 22.5 W, with the optical-to-optical efficiency and slope efficiency 1.3% and 3.6%, respectively.  相似文献   

15.
An active Q-switched diode-end-pumped Nd:YAG laser is reported with 2.9 W output power on the 4F3/2 → 4I9/2 transitions at a pump power of 24 W. With intracavity frequency doubling using a 20-mm-long LBO, a maximum blue output power of 2.25 W is achieved at a repetition rate of 23 kHz. The conversion efficiency from the corresponding Q-switched fundamental output to blue output is 96%. The peak power of the Q-switched blue pulse is up to 610 W with 160 ns pulse width. The fluctuation of the blue output power is less than 4.0% at the maximum output power.  相似文献   

16.
Fu Q  Seier F  Gayen SK  Alfano RR 《Optics letters》1997,22(10):712-714
We report on a femtosecond Ti:sapphire laser amplifier system that generates pulse energies >5 mJ at a 1-kHz repetition rate. The system consists of regenerative and multipass amplifiers and uses the technique of chirped-pulse amplification. When the system was seeded with 70-fs pulses at 800 nm from a self-mode-locked Ti:sapphire oscillator, amplified pulses of 94-fs duration at a repetition rate of 1 kHz and an average output power of 5.4 W were produced. The amplified pulse-repetition rate is variable from 250 Hz to 3 kHz. Pulse energies of >7.5 mJ were obtained at 500 and 250 Hz.  相似文献   

17.
We present the design and experimental results for a diode pumped Nd:YLF regenerative amplifier applied to amplify a nanosecond laser pulse. Numerical simulation shows that the maximum output energy and the best stability can be obtained when the regenerative amplifier operates in a saturated mode for all pulse duration and temporal profiles. Using extra post-pulse is a good method to decrease the square-pulse distortion caused by gain saturation effect. The amplifier shows output energy of 4.2mJ with a total energy gain of more than 10^7 and output energy stability of better than 1% rms. When extra post-pulse is added, square-pulse distortion is decreased from 1.33 to 1.17 for the amplifier that is seeded with an optical pulse of 3ns.  相似文献   

18.
We report on a widely tunable ytterbium fs-fiber laser without dispersion compensation. The all-normal dispersion laser contains a spectral filter for wavelength tuning and for generating additional amplitude modulation to support the nonlinear polarization evolution as mode-locking mechanism. By tilting the interference filter the center wavelength of the laser can be tuned from 1015 nm to 1050 nm with a pulse energy up to 2.0 nJ. The pulses can be dechirped externally to 108 fs.  相似文献   

19.
A frequency stabilization scheme following the Pound-Drever-Hall technique modified with a sample and hold circuit has been applied to a Q-switched diode-pumped Nd:YAG ring oscillator. The high-power ring is injection seeded by a monolithic non-planar ring laser oscillator (NPRO). The slave oscillator emits pulses of 23 ns duration and 20 mJ pulse energy with almost diffraction limited beam quality (M2 = 1.2) at a repetition rate of 400 Hz. The short-term fluctuation of the center frequency from pulse to pulse is 290 kHz. The oscillator is designed for applications within lidar measurements.  相似文献   

20.
Huijun He 《中国物理 B》2021,30(12):124206-124206
We report a diode-pumped rod-type Yb:YAG laser amplifier operating at 1 kHz. Cryogenic cooling method was adopted to make the Yb:YAG crystal work with four-level behavior. A single-frequency fiber laser acts as the seed in an actively Q-switched Yb:YAG oscillator. The resonator delivers 5.75-mJ pulses at 1 kHz with a pulse duration of approximately 40 ns. The pulses were amplified to 61 mJ in a four-pass rod-type Yb:YAG amplifier with optical-to-optical efficiency of 24% in the main amplifier. The M2 parameter of the output laser is <1.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号