首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, we study the stability of supersonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle of varying cross-sections. We formulate the problem as an initial–boundary value problem with the contact discontinuity as a free boundary. To deal with the free boundary value problem, we employ the Lagrangian transformation to straighten the contact discontinuity and then the free boundary value problem becomes a fixed boundary value problem. We develop an iteration scheme and establish some novel estimates of solutions for the first order of hyperbolic equations on a cornered domain. Finally, by using the inverse Lagrangian transformation and under the assumption that the incoming flows and the nozzle walls are smooth perturbations of the background state, we prove that the original free boundary problem admits a unique weak solution which is a small perturbation of the background state and the solution consists of two smooth supersonic flows separated by a smooth contact discontinuity.  相似文献   

2.
For a supersonic Euler flow past a straight-sided wedge whose vertex angle is less than the extreme angle, there exists a shock-front emanating from the wedge vertex, and the shock-front is usually strong especially when the vertex angle of the wedge is large. In this paper, we establish the L1 well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge whose boundary slope function has small total variation, when the total variation of the incoming flow is small. In this case, the Lipschitz wedge perturbs the flow, and the waves reflect after interacting with the strong shock-front and the wedge boundary. We first obtain the existence of solutions in BV when the incoming flow has small total variation by the wave front tracking method and then establish the L1 stability of the solutions with respect to the incoming flows. In particular, we incorporate the nonlinear waves generated from the wedge boundary to develop a Lyapunov functional between two solutions containing strong shock-fronts, which is equivalent to the L1 norm, and prove that the functional decreases in the flow direction. Then the L1 stability is established, so is the uniqueness of the solutions by the wave front tracking method. Finally, the uniqueness of solutions in a broader class, the class of viscosity solutions, is also obtained.  相似文献   

3.
We establish the existence and uniqueness of transonic flows with a transonic shock through a two-dimensional nozzle of slowly varying cross-sections. The transonic flow is governed by the steady, full Euler equations. Given an incoming smooth flow that is close to a constant supersonic state (i.e., smooth Cauchy data) at the entrance and the subsonic condition with nearly horizontal velocity at the exit of the nozzle, we prove that there exists a transonic flow whose downstream smooth subsonic region is separated by a smooth transonic shock from the upstream supersonic flow. This problem is approached by a one-phase free boundary problem in which the transonic shock is formulated as a free boundary. The full Euler equations are decomposed into an elliptic equation and a system of transport equations for the free boundary problem. An iteration scheme is developed and its fixed point is shown to exist, which is a solution of the free boundary problem, by combining some delicate estimates for the elliptic equation and the system of transport equations with the Schauder fixed point argument. The uniqueness of transonic nozzle flows is also established by employing the coordinate transformation of Euler-Lagrange type and detailed estimates of the solutions.  相似文献   

4.
We establish the existence and stability of multidimensional transonic shocks (hyperbolic‐elliptic shocks) for the Euler equations for steady compressible potential fluids in infinite cylinders. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for velocity, can be written as a second order nonlinear equation of mixed elliptic‐hyperbolic type for the velocity potential. The transonic shock problem in an infinite cylinder can be formulated into the following free boundary problem: The free boundary is the location of the multidimensional transonic shock which divides two regions of C1,α flow in the infinite cylinder, and the equation is hyperbolic in the upstream region where the C1,α perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem in unbounded domains. Our results indicate that there exists a solution of the free boundary problem such that the equation is always elliptic in the unbounded downstream region, the uniform velocity state at infinity in the downstream direction is uniquely determined by the given hyperbolic phase, and the free boundary is C1,α, provided that the hyperbolic phase is close in C1,α to a uniform flow. We further prove that, if the steady perturbation of the hyperbolic phase is C2,α, the free boundary is C2,α and stable under the steady perturbation. © 2003 Wiley Periodicals Inc.  相似文献   

5.
We establish the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as a second-order, nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the location of the transonic shock which divides the two regions of smooth flow, and the equation is hyperbolic in the upstream region where the smooth perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem. Our results indicate that there exists a unique solution of the free boundary problem such that the equation is always elliptic in the downstream region and the free boundary is smooth, provided that the hyperbolic phase is close to a uniform flow. We prove that the free boundary is stable under the steady perturbation of the hyperbolic phase. We also establish the existence and stability of multidimensional transonic shocks near spherical or circular transonic shocks.

  相似文献   


6.
This paper is devoted to the study of a transonic shock in three-dimensional steady compressible flow passing a duct with a general section. The flow is described by the steady full Euler system, which is purely hyperbolic in the supersonic region and is of elliptic-hyperbolic type in the subsonic region. The upstream flow at the entrance of the duct is a uniform supersonic one adding a three-dimensional perturbation, while the pressure of the downstream flow at the exit of the duct is assigned apart from a constant difference. The problem to determine the transonic shock and the flow behind the shock is reduced to a free boundary value problem of an elliptic-hyperbolic system. The new ingredients of our paper contain the decomposition of the elliptic-hyperbolic system, the determination of the shock front by a pair of partial differential equations coupled with the three-dimensional Euler system, and the regularity analysis of solutions to the boundary value problems introduced in our discussion.

  相似文献   


7.
In this paper we establish the existence and uniqueness of a transonic shock for the steady flow through a general two‐dimensional nozzle with variable sections. The flow is governed by the inviscid potential equation, and is supersonic upstream, has no‐flow boundary conditions on the nozzle walls, and a given pressure at the exit of the exhaust section. The transonic shock is a free boundary dividing two regions of C flow in the nozzle. The potential equation is hyperbolic upstream where the flow is supersonic, and elliptic in the downstream subsonic region. In particular, our results show that there exists a solution to the corresponding free boundary problem such that the equation is always subsonic in the downstream region of the nozzle when the pressure in the exit of the exhaustion section is appropriately larger than that in the entry. This confirms exactly the conjecture of Courant and Friedrichs on the transonic phenomena in a nozzle [10]. Furthermore, the stability of the transonic shock is also proved when the upstream supersonic flow is a small steady perturbation for the uniform supersonic flow or the pressure at the exit has a small perturbation. The main ingredients of our analysis are a generalized hodograph transformation and multiplier methods for elliptic equation with mixed boundary conditions and corner singularities. © 2004 Wiley Periodicals, Inc.  相似文献   

8.
We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics. The reaction rate function ?(T) is assumed to have a positive lower bound. We first consider the Cauchy problem (the initial value problem), that is, seek a supersonic downstream reacting flow when the incoming flow is supersonic, and establish the global existence of entropy solutions when the total variation of the initial data is sufficiently small. Then we analyze the problem of steady supersonic, exothermically reacting Euler flow past a Lipschitz wedge, generating an additional detonation wave attached to the wedge vertex, which can be then formulated as an initial-boundary value problem. We establish the global existence of entropy solutions containing the additional detonation wave (weak or strong, determined by the wedge angle at the wedge vertex) when the total variation of both the slope of the wedge boundary and the incoming flow is suitably small. The downstream asymptotic behavior of the global solutions is also obtained.  相似文献   

9.
We construct a single transonic shock wave pattern in an infinite nozzle asymptotically converging to a cylinder, which is close to a uniform transonic shock wave. In other words, suppose there is a uniform transonic shock wave in an infinite cylinder nozzle which can be constructed easily, if we perturbed the supersonic incoming flow and the infinite nozzle a little bit, we can obtain a transonic wave near the uniform one. As a consequence, we can show that the uniform transonic wave is stable with respect to the perturbation of the incoming flow and nozzle wall. Based on the theory of [G.Q. Chen, M. Feldman, Existence and stability of multi-dimensional transonic flows through an infinite nozzle of arbitrary cross-sections, Arch. Ration. Mech. Anal. 184 (2007) 185-242], the crucial parts of this paper are to derive the uniform Schauder estimates of the linear elliptic equation for the infinite nozzle asymptotically converging to a cylinder.  相似文献   

10.
We study the stability of transonic shocks in steady supersonic flow past a wedge. It is known that in generic case such a problem admits two possible locations of the shock front, connecting the flow ahead of it and behind it. They can be distinguished as supersonic–supersonic shock and supersonic–subsonic shock (or transonic shock). Both these possible shocks satisfy the Rankine–Hugoniot conditions and the entropy condition. We prove that the transonic shock is conditionally stable under perturbation of the upstream flow or perturbation of wedge boundary. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
When steady supersonic flow hits a slim wedge, there may appear an oblique transonic shock attached to the vertex of the wedge, if the downstream pressure is rather large. This paper studies stability in certain weighted partial Hölder spaces of the oblique transonic shock attached to the vertex of a wedge, which is against steady supersonic flows, under perturbations of the upstream flow and the profile of the wedge. We show that under reasonable conditions on the upcoming supersonic flow and the slope of the wedge, such transonic shocks are structural stable. Mathematically, we solve an elliptic–hyperbolic mixed type in an unbounded domain, and the flow field is proved to be C1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Under the hypothesis that the initial perturbation has small BV norm, we prove that in any bounded domain the L1 norm of the difference between solutions to the isentropic Euler system of steady supersonic flow and the system of steady irrotational supersonic flow with the same initial data can be bounded by the cube of the total variation of the initial perturbation.  相似文献   

13.
Under the hypothesis that the initial perturbation has small BV norm, we prove that in any bounded domain the L1 norm of the difference between solutions to the isentropic Euler system of steady supersonic flow and the system of steady irrotational supersonic flow with the same initial data can be bounded by the cube of the total variation of the initial perturbation.  相似文献   

14.
Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets. For the three-dimensional steady non-isentropic compressible Euler system with frictions, we constructe a family of transonic shock solutions in rectilinear ducts with square cross-sections. In this article, we are devoted to proving rigorously that a large class of these transonic shock solutions are stable, under multidimensional small perturbations of the upcoming supersonic flows and back pressures at the exits of ducts in suitable function spaces.This manifests that frictions have a stabilization effect on transonic shocks in ducts, in consideration of previous works which shown that transonic shocks in purely steady Euler flows are not stable in such ducts. Except its implications to applications, because frictions lead to a stronger coupling between the elliptic and hyperbolic parts of the three-dimensional steady subsonic Euler system, we develop the framework established in previous works to study more complex and interesting Venttsel problems of nonlocal elliptic equations.  相似文献   

15.
In this paper, we study a transonic shock problem for the Euler flows through a class of 2-D or 3-D nozzles. The nozzle is assumed to be symmetric in the diverging (or converging) part. If the supersonic incoming flow is symmetric near the divergent (or convergent) part of the nozzle, then, as indicated in Section 147 of [R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publ., New York, 1948], there exist two constant pressures P1 and P2 with P1<P2 such that for given constant exit pressure Pe∈(P1,P2), a symmetric transonic shock exists uniquely in the nozzle, and the position and the strength of the shock are completely determined by Pe. Moreover, it is shown in this paper that such a transonic shock solution is unique under the restriction that the shock goes through the fixed point at the wall in the multidimensional setting. Furthermore, we establish the global existence, stability and the long time asymptotic behavior of an unsteady symmetric transonic shock under the exit pressure Pe when the initial unsteady shock lies in the symmetric diverging part of the 2-D or 3-D nozzle. On the other hand, it is shown that an unsteady symmetric transonic shock is structurally unstable in a global-in-time sense if it lies in the symmetric converging part of the nozzle.  相似文献   

16.
We study the stability of stationary transonic shock fronts under two-dimensional perturbation in gas dynamics. The motion of the gas is described by the full Euler system. The system is hyperbolic ahead of the shock front, and is a hyperbolic-elliptic composed system behind the shock front. The stability of the shock front and the downstream flow under two-dimensional perturbation of the upstream flow can be reduced to a free boundary value problem of the hyperbolic-elliptic composed system. We develop a method to deal with boundary value problems for such systems. The crucial point is to decompose the system to a canonical form, in which the hyperbolic part and the elliptic part are only weakly coupled in their coefficients. By several sophisticated iterative processes we establish the existence and uniqueness of the solution to the described free boundary value problem. Our result indicates the stability of the transonic shock front and the flow field behind the shock.

  相似文献   


17.
On a Riemannian manifold the existence (and uniqueness) of subsonic gas flows with prescribed circulation has been previously established (Acta Math.125 1970, 57–73). If the manifold is a torus of revolution then the gas dynamics equation reduces to a nonlinear ordinary differential equation and the flow can be described explicitly. We show that, as the circulations are increased, one obtains a complete family of solutions: smooth subsonic, smooth transonic, transonic with shocks, and smooth supersonic flows.  相似文献   

18.
In this paper, we study the global existence of the supersonic shock for the steady supersonic Euler flow past a curved 2-D wedge. By using the method of characteristic, we show that the shock exists globally and the flow between the shock and wedge is continuous provided the wedge is a small perturbation of a straight wedge under a weighted global Sobolev norm and the vertex angle is less than the extreme angle.  相似文献   

19.
We present numerical results on self-similar two-dimensional Riemann problems governed by the compressible Euler system and the nonlinear wave system, which give rise to a transonic shock. We consider a configuration for a vertical incident shock moving to the right above a rectangular object. The incident shock then interacts with a sonic circle soon after it moves beyond the object, and creates a transonic region. We implement Lax–Liu positive schemes and Strang splitting, and obtain linear correlations of the incident shock strength and the shock strength at the vertical wall. We further implement Roe average methods and finite volume methods on quadrilateral grids to capture a contact discontinuity of the Euler system near the corner of the object. The contact discontinuity creates a new supersonic state and a transonic shock inside the transonic region.  相似文献   

20.
This paper studies the steady supersonic flow past a Lipschitz curved cone. Under the assumptions that the cone has an opening angle less than a critical value and has sufficiently small total variation of the tangent of the perturbation and that the Mach number of incoming flow is sufficiently large, the global weak solution is constructed via Glimm scheme for 1<γ<3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号