首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The valence contact spin and charge densities at Fe sites in ferromagnetic Fe−Cr alloys are calculated using the discrete variational method. The hyperfine field at Fe nucleus is expressed as a linear sum of a core term, that is proportional to the local 3d moment, and a valence term, which is proportional to the valence spin density. The dependence of the hyperfine field, the contact charge density and the 4s magnetic moment on the number and orientation of chromium atoms in the first and second shells is studied. Comparison to experimental data is made.  相似文献   

2.
Many-body wavefunctions were utilized to calculate von Neumann’s entropy as an entanglement measurement for neutral and negatively charged nitrogen vacancy (NV) centers in diamond. A generalized Hubbard Hamiltonian which considers e-e interaction terms completely was used to calculate many-electron wavefunctions of the ground and excited states. Correlation between entanglement and spin density distributed on neighboring atoms of NV is presented. The behavior of spin density and entanglement under relaxations of neighboring atoms is the same for all investigated ground and excited states. The results suggest that the spin density may be used to quantify the entanglemnt and vice versa.  相似文献   

3.
The spin torque and zeta force, which govern spin dynamics, are studied by using monoatoms in their steady states. We find nonzero local spin torque in transition metal atoms, which is in balance with the counter torque, the zeta force. We show that d-orbital electrons have a crucial effect on these torques. Nonzero local chirality density in transition metal atoms is also found, though the electron mass has the effect to wash out nonzero chirality density. Distribution patterns of the chirality density are the same for Sc–Ni atoms, though the electron density distributions are different.  相似文献   

4.
W.D. Hobey 《Molecular physics》2013,111(4):325-331
In dealing theoretically with the effects of vibronic interactions in substituted benzene mononegative radical-ions it is useful to know the spin density distributions in the degenerate ground level of unsubstituted benzene anions. A configuration interaction theory is developed for hydrocarbon anions with degenerate ground states and applied to the benzene anion problem. The results show negative spin densities on atoms having zero spin density in the Hückel approximation.  相似文献   

5.
We present a review of scattering models that can be used to describe the low-energy behavior of identical bosonic atoms. In the simplest models, the only degrees of freedom are atoms in the same spin state. More elaborate models have other degrees of freedom, such as atoms in other spin states or diatomic molecules. The parameters of the scattering models are specified by giving the S-wave phase shifts for scattering of atoms in the spin state of primary interest. The models are formulated as local quantum field theories and the renormalization of their coupling constants is determined. Some of the parameters can be constrained by renormalizability or by the absence of negative-norm states. The Green’s functions that describe the evolution of two-atom states are determined analytically. They are used to determine the T-matrix elements for atom-atom scattering and the binding energies of diatomic molecules. The scattering models all exhibit universal behavior as the scattering length in a specific spin state becomes large.  相似文献   

6.
基于第一性原理的密度泛函理论,对SiC单层不同位置掺杂Co进行了能带结构、电子态密度、净自旋密度和自旋纹理等计算,结果表明不同位置的掺杂引起不同特征的自旋积累及单层的电子结构特性。由于Co的不同选位掺杂而产生一些新奇现象,如扭曲的Co-C键在掺杂SiC内激发了自旋流而诱导了自旋重新分布,不同选位的Co原子通过调整内磁场改变了小极化子内巡游电子的定域属性,增加了Dirac点附近磁振子的色散强度等。这些研究结果为得到一个人工调控量子自旋电路和选频自旋波器件内自旋谷电子提供了理想平台。  相似文献   

7.
To unravel the mystery of the recently observed giant magnetic moments of Fe and Co in Cs films, orbital-polarization corrected relativistic spin density functional calculations have been performed. Unlike other transition–metal systems where the orbital magnetic moments are quenched, Fe and Co in Cs as well as in other alkali metals are found to possess a giant orbital moment of 2–3 μB along with a large spin moment. Also, these free atom-like spin and orbital magnetic moments in Cs would not be squashed under large lattice contractions up to 23% around the impurity atoms. The induced moments on the host atoms are small. The results offer an explanation for the origin of the giant magnetic moments of Fe and Co in Cs films.  相似文献   

8.
郝亚非 《中国物理 B》2013,22(1):17102-017102
We theoretically investigate the spin-orbit interaction in GaAs/AlxGa1 x As coupled quantum wells. We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to the spin splitting. For the coupled quantum wells which bear an inherent structure inversion asymmetry, the same probability density distribution of electrons in the two step quantum wells results in a large spin splitting from the interface term. If the widths of the two step quantum wells are different, the electron probability density in the wider step quantum well is considerably higher than that in the narrower one, resulting in the decrease of the spin splitting from the interface term. The results also show that the spin splitting of the coupled quantum well is not significantly larger than that of a step quantum well.  相似文献   

9.
P Nayak  S N Behera 《Pramana》1982,19(5):467-482
A coherent potential approximation (cpa) for a mixed diatomic linear chain including both mass and force constant changes has been developed. In this case an impurity atom substituted at a particular site in one of the sublattices couples with two nearest neighbour atoms in the other sublattices. The diatomic linear chain is therefore considered as a tetratomic linear chain, the size of the unit cell being twice the original. Thecpa density of states and the dielectric susceptibility have been calculated. The numerical values of the later have been calculated in theata (averaget-matrix approximation) limit. Comparison of these results with the experimental and other computer calculations show a qualitative agreement.  相似文献   

10.
The origin of localized magnetic moments formation in metals is investigated theoretically using a self-consistent local spin density molecular cluster approach. Clusters with up to 55 atoms are employed to describe isolated impurity local moment behavior in the cases of FeAg and FePd. Densities of states and spin magnetic moments were determined and compared with results of spectroscopic (notably photoemission) and magnetization measurements, respectively. In the case of a noble metal host, the spin magnetization density is found to be highly localized around the Fe site; the iron moment is ≈ 3.9μB and the polarization of the host Ag atoms is small. In the case of a transition metal host, the iron moment is ≈ 3.2 μB but here the strong hybridization of the Fe-3d and Pd-4d states results in a large induced magnetic moment in the host PD metal — in essential agreement with experiment for this giant moment system.  相似文献   

11.
An integration and assembly strategy for efficient evaluation of the exchange correlation term in relativistic density functional theory within two-component Kohn–Sham framework is presented. Working equations that both take into account all the components of the spin magnetization and can exploit parallelism, optimized cache utilization, and micro-architecture specific-floating point operations are discussed in detail in this work. The presented assembly of the exchange correlation potential, suitable for both open and closed shell systems, uses spinor density and a set of auxiliary variables, ensuring easy retrofitting of existing density functionals designed for collinear density. The used auxiliary variables in this paper, based on the scalar and non-collinear density, can preserve non-zero exchange correlation magnetic field local torque, without violating the required overall zero torque, even for GGA functionals. This is mandatory to obtain accurate spin dynamics and proper time evolution of the magnetization. Spin frustrated hydrogen rings are used to validate the current implementation and phenoxy radicals of different sizes are used to monitor the performance. This approach is a step towards extending the applicability of relativistic two-component DFT to systems of large size (>100 atoms).  相似文献   

12.
The electronic and magnetic properties of N-doped ZnO nanosheets are investigated by density functional theory using local spin density approximation. The results show that in an isolated N-doped ZnO nanosheet, there is a clear spontaneous polarization of N 2p state with a magnetic moment 1.0 μB/N. We also find that the doped nitrogen atoms in ZnO nanosheets have a clustering tendency with ferromagnetic coupling between them, and thus a high room-temperature ferromagnetic nature is expected. The ferromagnetic coupling in N-doped ZnO nanosheets can be attributed to the hole-mediated double-exchange mechanism through strong p–d interaction between nitrogen and zinc atoms.  相似文献   

13.
The electronic structure and optical properties of the intermetallic compound PrNi5 and their evolution during the substitution of copper or cobalt atoms for nickel atoms have been investigated. The band spectra of the studied compounds have been calculated in the local spin density approximation corrected to account for strong electron-electron interactions in the 4f shell of the rare-earth ion (LSDA + U method). The dispersion relations of the optical conductivity in the interband light absorption region have been interpreted using the results of calculations of the electron density of states.  相似文献   

14.
Spin transfer torque in magnetic structure occurs when the transverse component of the spin current that flows from the nonmagnetic medium to ferromagnetic medium is absorbed by the interface. In this paper, considering the Rashba effect on the semiconductor region, we discuss the spin transfer torque in semiconductor/ferromagnetic structure and obtain the components of spin-current density for two models:(i) single electron and(ii) the distribution of electrons. We show that no matter whether the difference in Fermi surface between semiconductor and Fermi spheres for the up and down spins in ferromagnetic increases, the transmission probability decreases. The obtained results for the values used in this article illustrate that Rashba effect increases the difference in Fermi sphere between semiconductor and Fermi sphere for the up and down spins in ferromagnetic. The results also show that the Rashba effect, brings an additional contribution to the components of spin transfer torque, which does not exist in the absence of the Rashba interaction. Moreover, the Rashba term has also different effects on the transverse components of the spin torque transfer.  相似文献   

15.
We have investigated spin singlet Mott states of spin-one bosons with antiferromagnetic interactions. These spin singlet states do not break rotational symmetry and exhibit remarkably different macroscopic properties compared with nematic Mott states of spin-one bosons. We demonstrate that the dynamics of spin singlet Mott states is fully characterized by even- or odd-class quantum dimer models. The difference between spin singlet Mott states for even and odd numbers of atoms per site can be attributed to a selection rule in the low energy sectors of on-site Hilbert spaces; alternatively, it can also be attributed to an effect of Berry’s phases on bosonic Mott states. We also discuss evidence for spin singlet quantum condensate of spin-one atoms. Our main finding is that in a projected spin singlet Hilbert space, the low energy physics of spin-one bosons is equivalent to that of a Bose-Hubbard model for spinless bosons interacting via Ising gauge fields. The other major finding is spin-charge separation in some one-dimensional Mott states. We propose charge-e spin singlet superfluid for an odd number of atoms per lattice site and charge-2e spin singlet superfluid for an even number of atoms per lattice site in one-dimensional lattices. All discussions in this article are limited to integer numbers of bosons per site.  相似文献   

16.
Ⅲ族金属单硫化物因其优越的光电和自旋电子特性而备受关注,实现对其自旋性质的有效调控是发展器件应用的关键.本文采用密度泛函理论系统地研究了GaSe表面Fe原子吸附体系的几何构型及自旋电子特性.Fe/GaSe体系中Fe吸附原子与最近邻Ga,Se原子存在较强的轨道耦合效应,使体系呈现100%自旋极化的半金属性.其自旋极化贡献主要来源于Fe-3d电子的转移及Fe-3d,Se-4p和Ga-4p轨道杂化效应.对于Fe双原子吸附体系,两Fe原子之间的自旋局域导致原本从Fe转移至GaSe的自旋极化电荷量减少,从而费米能级附近的单自旋通道转变为双自旋通道,费米能级处的自旋极化率转变为0.研究结果揭示了Fe_n/GaSe吸附体系自旋极化特性的形成和转变机制,可为未来二维自旋纳米器件的设计与构建提供参考.  相似文献   

17.
多电子原子能量的相对论修正   总被引:3,自引:1,他引:2  
以Breit-Pauli哈密顿的球张量形式为基础,借助不可约张量理论,建立了计算多电子原子能量的相对论修正的一种解析理论形式,导出了多电子原子相对论修正项(包括相对论质量修正项、单体和双体达尔文修正项、自旋-自旋接触相互作用项和轨道-轨道相互作用项)在斯莱特表象中的矩阵元的解析表达式,完成了所有角向积分和自旋求和计算.利用所建立的理论,对类锂体系(1s)2(2p)2P态能量的相对论修正进行了具体计算.  相似文献   

18.
The electronic and spin properties of different nanocrystals of carbon are studied. The properties of these cluster systems are modeled in terms of the ab initio (Hartree-Fock) and semiempirical (PM3, AM1) quantum-chemical methods. The calculations are performed for different carbon nanocluster systems: defect-free and with [NV]? centers, hydrogen passivated (C38H42, C71H84, C86H78), and with a free (unpassivated) surface (C38, C71, C86). The spin properties of unhydrated nanoclusters were studied for the first time. The structure of all the clusters under study was optimized using the total energy minimization principle. It is shown that, in the case of hydrated carbon nanocrystals passivated by hydrogen atoms, diamond-like clusters are formed. The atomic structure of an unpassivated nanocrystal depends on the number of atoms in the cluster, as well as on its initial geometrical parameters. In some cases, clusters with a fullerene-like surface are formed. In hydrogenpassivated diamond nanocrystals with [NV]? centers, the spin density is localized at the nuclei of C atoms nearest to the center vacancies. For the unpassivated counterparts, the spin density is localized at the nuclei of C atoms forming the surface of the corresponding nanocrystal.  相似文献   

19.
We investigate theoretically soliton excitations and dynamics of their formation in strongly correlated systems of ultracold bosonic atoms in two and three dimensional optical lattices. We derive equations of nonlinear hydrodynamics in the regime of strong interactions and incommensurate fillings, when atoms can be treated as hard core bosons. When parameters change in one direction only we obtain Korteweg–de Vries type equation away from half-filling and modified KdV equation at half-filling. We apply this general analysis to a problem of the decay of the density step. We consider stability of one dimensional solutions to transverse fluctuations. Our results are also relevant for understanding nonequilibrium dynamics of lattice spin models.  相似文献   

20.
Single P-doped endohedral P@C60 is investigated via semiempirical and first-principles calculations. Unlike the encased N atom, which is situated on the centre of the C60 cage and not covalently bound to the carbon atoms of the fullerene cage, static geometric optimization shows that the encased P atom occupies an off-centre position and is bound to the carbon atoms of the fullerene cage. The electronic ground state of the doped system is the spin quarter state, with spin density distribution significantly compressed by the cage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号