首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Li  J. Y. Zhang  P. Zhang  K. Wu  J. Sun 《哲学杂志》2016,96(29):3016-3040
Creep tests were performed on the high stacking fault energy (SFE) nanotwinned (NT) Ni free-standing foils with nearly the same twin thickness at room temperature (RT) to investigate the effects of grain size and loading rate on their microstructural stability and creep behaviour. The grain growth mediated by the twinning/detwinning mechanism at low applied stresses (<800 MPa) and grain refinement via the detwinning mechanism at high applied stresses (>800 MPa) were uncovered in the present NT-Ni foils during RT creep, both of which are attributed to the interactions between dislocations and boundaries. It appears that a higher initial dislocation density leads to a faster primary creep strain rate and a slower steady-state creep strain rate. Unlike the non-twinned metals in which grain growth often enhances the creep strain rate, the twinning/detwinning-mediated grain growth process unexpectedly lowers the steady-state creep strain rate, whereas the detwinning-mediated grain refinement process accelerates the creep strain rate in the studied NT-Ni foils. A modified phase-mixture model combined with Arrhenius laws is put forward to predict the scaling behaviour between the creep strain rate and the applied stress, which also predicts the transition from grain growth-reduced to grain refinement-enhanced steady-state creep strain rate at a critical applied stress. Our findings not only provide deeper insights into the grain size effect on the mechanical behaviour of nanostructured metals with high SFE, but also benefit the microstructure sensitive design of NT metallic materials.  相似文献   

2.
Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.  相似文献   

3.
The influence of the dislocation mobility on the creep rate in aluminum has been estimated. In a steady state of creep, the dislocation mobility is varied by pinning dislocations using impurity atoms during heating. It has been shown that the change in the creep rate is proportional to the fraction of impurity atoms that migrate from the solid solution of deformed aluminum toward the dislocations.  相似文献   

4.
ABSTRACT

Ultra-fine grained copper with nanotwins is found to be both strong and ductile. It is expected that nanocrystalline metals with lamella grains will have strain hardening behaviour. The main unsolved issues on strain hardening behaviour of nanocrystalline metals include the effect of stacking fault energy, grain shape, temperature, strain rate, second phase particles, alloy elements, etc. Strain hardening makes strong nanocrystalline metals ductile. The stacking fault energy effects on the strain hardening behaviour are studied by molecular dynamics simulation to investigate the uniaxial tensile deformation of the layer-grained and equiaxed models for metallic materials at 300?K. The results show that the strain hardening is observed during the plastic deformation of the layer-grained models, while strain softening is found in the equiaxed models. The strain hardening index values of the layer-grained models decrease with the decrease of stacking fault energy, which is attributed to the distinct stacking fault width and dislocation density. Forest dislocations are observed in the layer-grained models due to the high dislocation density. The formation of sessile dislocations, such as Lomer–Cottrell dislocation locks and stair-rod dislocations, causes the strain hardening behaviour. The dislocation density in layer-grained models is higher than that in the equiaxed models. Grain morphology affects dislocation density by influencing the dislocation motion distance in grain interior.  相似文献   

5.
Feltham's stochastic model is used to describe dislocation hardening during primary creep in metals which contain a three-dimensional irregular network of dislocations. The original stochastic equation is modified so as to fulfil a condition of volume conservation. The modified differential equation is then solved and a time-dependent distribution function of dislocation segment lengths is obtained. Since the creep strain is given by a summation of strain contributions from individual dislocation segments, the time dependence of the creep strain, i.e. the creep curve, can also be obtained.  相似文献   

6.
Carefully designed indentation creep experiments and detailed finite-element computations were carried out in order to establish a robust and systematic method to extract creep properties accurately during indentation creep tests. Samples made from an Al–5.3?mol%?Mg solid-solution alloy were tested at temperatures ranging from 573 to 773?K. Finite-element simulations confirmed that, for a power-law creep material, the indentation creep strain field is indeed self-similar in a constant-load indentation creep test, except during short transient periods at the initial loading stage and when there is a deformation mechanism change. Self-similar indentation creep leads to a constitutive equation from which the power-law creep exponent n, the activation energy Q c for creep, the back or internal stress and so on can be evaluated robustly. The creep stress exponent n was found to change distinctively from 4.8 to 3.2 below a critical stress level, while this critical stress decreases rapidly with increasing temperature. The activation energy for creep in the stress range of n = 3.2 was evaluated to be 123?kJ?mol?1, close to the activation energy for mutual diffusion of this alloy, 130?kJ?mol?1. Experimental results suggest that, within the n = 3.2 regime, the creep is rate controlled by viscous glide of dislocations which drag solute atmosphere and the back or internal stress is proportional to the average applied stress. These results are in good agreement with those obtained from conventional uniaxial creep tests in the dislocation creep regime. It is thus confirmed that indentation creep tests of Al–5.3?mol%?Mg solid-solution alloy at temperatures ranging from 573 to 773?K can be effectively used to extract material parameters equivalent to those obtained from conventional uniaxial creep tests in the dislocation creep regime.  相似文献   

7.
Even at ambient temperature or less, below their 0.2% proof stresses all hexagonal close-packed metals and alloys show creep behaviour because they have dislocation arrays lying on a single slip system with no tangled dislocation inside each grain. In this case, lattice dislocations move without obstacles and pile-up in front of a grain boundary. Then these dislocations must be accommodated at the grain boundary to continue creep deformation. Atomic force microscopy revealed the occurrence of grain boundary sliding (GBS) in the ambient-temperature creep region. Lattice rotation of 5° was observed near grain boundaries by electron backscatter diffraction pattern analyses. Because of an extra low apparent activation energy of 20 kJ/mol, conventional diffusion processes are not activated. To accommodate these piled-up dislocations without diffusion processes, lattice dislocations must be absorbed by grain boundaries through a slip-induced GBS mechanism.  相似文献   

8.
杨剑群  马国亮  李兴冀  刘超铭  刘海 《物理学报》2015,64(13):137103-137103
本文利用低温力学测试系统研究了电化学沉积纳米晶Ni在不同温度和宽应变速率条件下的压缩行为. 借助应变速率敏感指数、激活体积、扫描电子显微镜及高分辨透射电子显微镜方法, 对纳米晶Ni的压缩塑性变形机理进行了表征. 研究表明, 在较低温度条件下, 纳米晶Ni的塑性变形主要是由晶界位错协调变形主导, 晶界本征位错引出后无阻碍的在晶粒内无位错区运动, 直至在相对晶界发生类似切割林位错行为. 并且, 在协调塑性变形时引出位错的残留位错能够增加应变相容性和减小应力集中; 在室温条件下, 纳米晶Ni的塑性变形机理主要是晶界-位错协调变形与晶粒滑移/旋转共同主导. 利用晶界位错协调变形机理和残留位错运动与温度及缺陷的相关性揭示了纳米晶Ni在不同温度、不同应变速率条件下力学压缩性能差异的内在原因.  相似文献   

9.
The presence of copper atoms as continuous networks at the grain boundaries of an aluminium-copper alloy has been considered not preventing the moving of dislocations during creep (or at least partially). The dislocations can bs absorbed by these boundaries and penetrate through them. That leads to changés of shape and structure of grains and also to the sliding of grains against each other. This was deduced from the accelerating increase in the sensitivity of the steady state creep rate to the applied stress of an aluminium 2·8 wt% copper alloy examined at wide range of temperatures (50–350 °C) and applied stresses (7–170 MPa). This rapid increase in the sensitivity parameter of the steady state creep rate occurs in Al-Cu alloys at quite higher ranges of applied stresses and may be attributed mainly to the contribution of the grain boundary movements to the creep strain.  相似文献   

10.
纳米压痕法测量Cu的室温蠕变速率敏感指数   总被引:6,自引:0,他引:6       下载免费PDF全文
张建民  徐可为 《物理学报》2004,53(8):2439-2443
把恒加载速率/载荷法(const.P·/P)和恒载荷法(const.P)相结合,提出了一个稳态加载和长时间保载的纳米压痕蠕变试验新方法.该方法不仅适用于高蠕变能力的低熔点材料,也适用于低蠕变能力和存在压痕尺寸效应的高熔点材料.用该方法确定Cu的室温蠕变速率敏感指数m为0.01,并发现其值不受加载段所用的P·/P值和达到的最大压入位移h-max的影响. 关键词: 纳米压痕 铜 蠕变 蠕变速率敏感指数  相似文献   

11.
The deformation process in copper and aluminium single crystals under shock loading is investigated using a multiscale model of plasticity that couples discrete dislocation dynamics and finite element analyses. Computer simulations are carried out to mimic loading condition of high strain rates ranging from 105 to 107?s?1, and short pulse durations of few nanoseconds involved in recent laser based experiments. The effects of strain rate, shock pulse duration and the nonlinear elastic properties are investigated. Relaxed configurations using dislocation dynamics show formation of dislocation micro bands and weak dislocation cells. Statistical analyses of the dislocation microstructures are preformed to study the characteristics of the local dislocation densities and the distribution of the instantaneous dislocations velocities.  相似文献   

12.
David M. Cole † 《哲学杂志》2013,93(30):3217-3234
Creep recovery strain is significant in polycrystalline ice, and its stress dependence is strongly dependent on ice type and deformation history. Although it is generally recognized that creep recovery strain is largely attributable to dislocations, a dislocation-based model that rectifies the observed differences in two important ice types (freshwater and sea ice) has not previously emerged; and the development of such a model forms the goal of the present effort. The model considers basal dislocation distributions, employs a dislocation density–stress relationship from previous work, and uses an empirical expression for the decrease in slip-line spacing with increasing stress. The dislocation processes are taken to operate over a subgrain-sized domain, and the strain associated with the relative motion of neighbouring domains is considered. The model accounts for dislocation multiplication and the decrease in slip-line spacing if the applied stress is sufficiently high. The model explains the observed differences in creep recovery strain for freshwater and sea ice and adequately reproduces both the stress dependence and the limiting value of the experimentally observed behaviour. It also reproduces the shift from nonlinear to linear behaviour that has been observed in prestrain experiments on freshwater and sea ice cores.  相似文献   

13.
A. Epishin  T. Link 《哲学杂志》2013,93(19):1979-2000
[001] single-crystal specimens of the superalloys CMSX-4 and CMSX-10 were tested for creep at 1100°C under tensile stresses between 105 and 135?MPa, where they show pronounced steady creep. The deformed superalloys were analysed by density measurements, scanning electron microscopy and transmission electron microscopy which supplied information about porosity growth, evolution of the γ–γ′ microstructure, dislocation mobility and reactions during creep deformation. It is shown that, under the testing conditions used, steady creep strain mostly results from transverse glide–climb of (a/2) ?011? interfacial dislocations. A by-product of the interfacial glide–climb are vacancies which diffuse along the interfaces to growing pores or to a ?100? edge dislocations climbing in the γ′ phase. Climb of a ?100? dislocations in the γ′ phase is a recovery mechanism which reduces the constraining of the γ phase by the γ′ phase, thus enabling further glide of (a/2) ?011? dislocations in the matrix. Moreover the γ′ dislocations act as vacancy sinks facilitating interfacial glide–climb. The creep rate increases when the γ–γ′ microstructure becomes topologically inverted; connection of the γ′ rafts results in extensive transverse climb and an increase of the number of a?100? dislocation segments in the γ′ phase.  相似文献   

14.
This work presents the results of a comparative molecular dynamics study showing that relaxed random grain boundary structures can be significantly non-planar at the nano-scale in fcc metals characterized by low stacking fault values. We studied the relaxed structures of random [1?1?0] tilt boundaries in a polycrystal using interatomic potentials describing Cu and Pd. Grain boundaries presenting non-planar features were observed predominantly for the Cu potential but not for the Pd potential, and we relate these differences to the stacking fault values. We also show that these non-planar structures can have a strong influence on dislocation emission from the grain boundaries as well as on grain boundary strain accommodation processes, such as grain boundary sliding. We studied the loading response in polycrystals of 40 nm grain size to a level of 9% strain and found that the non-planar grain boundaries favour dislocation emission as a deformation mechanism and hinder grain boundary sliding. This has strong implications for the mechanical behaviour of nano-crystalline materials, which is determined by the competition between dislocation activity and grain boundary accommodation of the strain. Thus, the two interatomic potentials for Cu and Pd considered in this work resulted in the same overall stress–strain curve, but significantly different fractions of the strain accommodated by the intergranular versus intragranular deformation mechanisms. Strain localization patterns are also influenced by the non-planarity of the grain boundary structures.  相似文献   

15.
Constant strain rate molecular dynamics simulations of nanocrystalline Al demonstrate that a significant amount of dislocations that have nucleated at the grain boundaries, exhibit cross-slip via the Fleischer mechanism as they propagate through the grain. The grain boundary structure is found to strongly influence when and where cross-slip occurs, allowing the dislocation to avoid local stress concentrations that otherwise can act as strong pinning sites for dislocation propagation.  相似文献   

16.
Mathematical models that have been proposed for creep in ceramics are described. Emphasis is on models involving grain boundary motion (sliding or flow). In Lifshitz models the crystalline grains elongate with strain; the elongation results from diffusion, slip, or solution and precipitation. In Rachinger models the grains do not elongate during creep. The sliding strain can be accommodated by viscous flow of a glassy phase at the grain boundaries, or if there is no boundary glass by diffusion or slip in superplastic models. Sliding of a glass-free boundary can result in cavitation, cracking, or formation of boundary dislocations or triple point folds.

Most models of ceramic creep at high temperatures predict a steady state (stage II) creep rate that depends on the applied stress, grain size, and temperature. A general equation for the creep rate as a function of these factors, as well as the elastic modulus and a diffusion coefficient, is used to compare models. The models give different exponents for the functional dependence of creep rate on grain size and strain and different temperature dependencies. These differences are compared in tables, and the main mechanistic features of the models are described in the text.

The purpose of this review is to describe creep models rather than to compare them with experimental results or to select the most applicable models. There are few critical experimental tests that allow selection of the most accurate models; such experiments are suggested as the next step in choosing between the models for specific experimental results.  相似文献   


17.
A model of radiation creep of interstitial solid solutions is developed on the basis of the combined motion of dislocations, including their glide and climb past obstacles. The obstacles considered are forest dislocations and pileups of radiation-induced point defects. A computational formula for the rate of strain is derived which describes creep at high stresses, when the gliding dislocations overcome some of the barriers by force, and a method is described for determining the average distance traversed by a dislocation in the glide plane under the influence of the stress until it is stopped by barriers. The results are compared with those of other authors. It is shown that the formula obtained for the rate of strain goes over in particular cases to those given by the previously known SIPA, Gittus-Mansur, and glide-climb models of radiation creep. Zh. Tekh. Fiz. 69, 64–71 (January 1999)  相似文献   

18.
When a polycrystalline aggregate is deformed beyond the elastic range, dislocations pile up at grain boundaries and make some patterned structures within the grains. If the external load is reversed, most dislocations at grain boundaries and in the patterned structure are supposed to disappear or change their arrangements, but the details are not yet well known. In this study, we examined such changes in dislocation structures by a crystal plasticity analysis. Models for the polycrystalline aggregates consist of three grains and the generation and degeneration of the geometrically necessary dislocations during cyclic loading are examined in detail. The results show that there are some groups of dislocations that do not dissipate but evolve upon reverse loading.  相似文献   

19.
王中光  黄元士  葛庭燧 《物理学报》1965,21(6):1253-1263
本文进行了淬火状态的、含0.52,0.91,3.46和5.15%Mg的铝合金的扭转疲劳试验,测定了相应的ΔE-N曲线和Tm-N曲线。实验结果指出,对于含镁量为0.52,0.91%的试样来说,当表面扭应变较小时,ΔE在起始时,随着应力循环数的增加而下降。当表面扭应变增大时,ΔE-N曲线始而变平,继而上升,直至达到一较高值才稳定下来。当试样中的含镁量为3.46%时,在扭应变不太大时,ΔE-N曲线的变化情况与Al-4%Cu合金的相象,不过当扭应变足够大时,ΔE起始时上升,并且经过一个峯值又下降。当含镁量增至5.15%时,ΔE-N曲线的表现已完全与Al-4%Cu合金的相象,在所用的最高表面扭应变下也并不表现出明显的峯值。对于所用的各种成分的试样来说,最大抗扭矩Tm起始总是上升的。上述结果都可以根据溶质镁原子在疲劳过程中渐渐进入位错,形成气团来解释。可以认为,在铝镁合金的情形,产生ΔE的因素以及影响ΔE的大小的因素,对于疲劳载荷的起始阶段来说,可能都主要是由于气团的作用。当含镁量较低时,对于足够高的表面扭应变来说,气团较为松动,位错能够拖着气团运动,从而需要作功,使ΔE和Tm都上升。但当合镁量较高时,或表面扭应变不太大时,在疲劳一起始就形成了能够对于位错起钉扎作用的足够浓的气团。继续进行疲劳时,进入位错的溶质原子将使位错的动性进一步降低,导致ΔE起始下降,Tm起始上升。此外,还对于经过不同时效处理的Al-0.52%Mg和Al-3.46%Mg合金进行了疲劳试验,观测到应变时效现象,这与上述的溶质原子气团模型相合。  相似文献   

20.
We investigate deformation of pure Cu, pure Nb and 30?nm Cu/30?nm Nb nanolaminates induced by high strain rate shock loading. Abundant dislocation activities are observed in shocked pure Cu and Nb. In addition, a few deformation twins are found in the shocked pure Cu. In contrast, in shocked Cu/Nb nanolaminates, abundant deformation twins are found in the Cu layers, but only dislocations in the Nb layers. High resolution transmission electron microscopy reveals that the deformation twins in the Cu layers preferentially nucleate from the Cu(112)//Nb(112) interface habit planes rather than the predominant Cu(111)//Nb(110) interface planes. Our comparative study on the shock-induced plastic deformation of the pure metals (Cu and Nb) and the Cu/Nb nanolaminates underscores the critical role of heterogeneous phase interfaces in the dynamic deformation of multilayer materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号