首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α,ω-Dihydroxyl polystyrene was synthesized by the addition of styrene oxide to polystyryl dianion initiated with sodium naphthalene. Diglyme was found to be an unsuitable solvent for the preparation of low molecular weight compounds. Block copolymerization of the α,ω-dihydroxyl polystyrenes (M?n = 2250, 3140, and 6200) with poly(ethylene glycols) (M?n = 404, 1960, and 5650) was pursued by introducing urethane linkages with 4,4′-diphenylmethane diisocyanate. The mechanical, thermal, and viscoelastic properties, solution viscosity, molecular weight distribution, and moisture absorption of the block copolymers obtained were examined. Incorporation of styrene blocks was found to disturb the crystallization and fusion of poly(ethylene glycol) blocks. Films cast from benzene solution were soft and elastic and absorbed up to 5.8% moisture.  相似文献   

2.
Alternating—i.e., -(A-B)n- type—block copolymers of polyisobutylene (PIB) and aromatic polyether sulfone (PSU) have been prepared by phase transfer catalyzed Williamson polyetherification of α,ω-di(phenol)PIB with α,ω-di(chloroallyl)- or -(bromobenzyl)PSU. Block copolymers of the two prepolymers were also synthesized by the phase transfer catalyzed polyetherification of methylene chloride with α,ω-di(phenol)PIB and α,ω-di(phenol)PSU (bisphenol-A-terminated PSU). This method leads to -[(A)x-(B)y]n- block copolymers with formal linkages between segments. At sufficiently high segment lengths, both types of block copolymers exhibit two distinct Tgs, indicating phase separation into rubbery PIB and glassy PSU domains.  相似文献   

3.
In an effort to combine and tailor the properties of thermoplastic resins we have investigated the synthesis of polyimide–polyformal block copolymers prepared by the condensation reaction of α,ω-diamino functionalized polyformal oligomers with α,ω-dianhydride terminated polyimide oligomers. Amino functionalized polyformal oligomers were synthesized by displacement condensation reactions of various bisphenols with methylene dihalides in the presence of base and aminophenols. Oligomeric aromatic polyformals having weight average molecular weights (MWw) of 7500 to 40,000 were obtained. Anhydride terminated polyimide oligomers with molecular weights (MWw) ranging from 10,000 to 15,000 were obtained by the condensation of bisphenol-A–dianhydride and aromatic amines. Combining the polyimide oligomers with the polyformal oligomers in dipolar aprotic or nonpolar solvents afforded the desired block copolymers. The polyimide–polyformal block copolymers generally display two distinct glass transition temperatures by differential scanning calorimetry. The (AB)n block copolymers were evaluated by TGA in both air and N2 for thermal/oxidative stability.  相似文献   

4.
Three series of block copolymers, namely, polystyrenecaproamide (I), polystyrenehexamethyleneadipamide (II), and poly(styreneethylene terephthalate) (III), were prepared, and the properties of the copolymers in relation to the block sequence lengths and the compositions were studied. Styrene was polymerized in the presence of aluminum chloride and thionyl chloride to give ω,ω′-dichloropolystyrenes of various degrees of polymerization from 12.0 to 51.0, which were either ammonolyzed to ω,ω′-diaminopolystyrene or hydrolyzed to ω,ω′-dihydroxypolystyrene. ω,ω′-Diaminopolystyre was treated with adipic acid to give the corresponding salts, namely, ω,ω′-diammoniumpolystyrene adipate, which was melt-polymerized either with ε-amino-n-caproic acid to give polystyrenecaproamide (I) or with hexamethylenediammonium adipate to give polystyrenehexamethyleneadipamide (II). ω,ω′-Dihydroxypolystyrene was melt-polymerized with dimethyl terephthalate and ethylene glycol to give poly(styreneethylene terephthalate) (III). All the block copolymers were of high enough molecular weight to be cast or spun into films or filaments. Upon polymerization, the increase of the block sequence of PSt units increased the amide content but decreased the ester content of the resulting copolymers. Also, an increase in n decreased the inherent viscosities of the copolymers at a constant monomer feed fc counted by the polymer equivalent of PSt but increased the inherent viscosities at a constant monomer feed rc counted by the monomer equivalent of PSt. The melting points of the copolymers decreased with increasing n values. Also, an increase in n decreased the densities of I and III but increased the density of II at a constant amide or ester composition Fc counted by polymer units but increased the densities of I, II, and III at a constant amide or ester composition Rc counted by the monomer unit.  相似文献   

5.
A series of α,ω-dihydroxy polyarylene sulfones (PAES) were synthesized comprising bisphenol A (PAES1, Mn=1800, 4900, and 9500 daltons), 4,4-biphenol (PAES2, Mn=4100 daltons), and hexafluorobisphenol A (PAES3, Mn=3300 daltons). These were reacted with α,ω-dibromo poly(vinylidene fluoride) (PVDF, Mn=1200 daltons) prepared by telomerization, to yield block copolymers possessing rigid and flexible segments. Block copolymers were characterized by FTIR, NMR, GPC, DSC, TGA and TEM. In several cases the block copolymers exhibited distinct thermal transitions, i.e. Tm and Tg for PVDF and PAES segments, respectively. Where observable, Tg of PAES domains in the block copolymers occurred at a temperature lower than the corresponding PAES homopolymer due to the flexible nature of the surrounding PVDF domains. Block copolymers exhibited a similar thermal stability to the corresponding PAES homopolymers but higher stability than the PVDF homopolymer, and much higher still than α,ω-dibromo PVDF. TEM analyses indicate that phase separation of PAES and PVDF domains occurs on the nanometer scale.  相似文献   

6.
Microphase‐separated structures of a series of AB6 block‐graft copolymers were studied by TEM and SAXS. Ten copolymers with the same polystyrene (S) backbone and six polyisoprene (I) grafts on the average but with different graft chain lengths were carefully synthesized by living anionic polymerization, covering the range 0.21 ≤ ?S ≤ 0.90, where ?S denotes polystyrene compositions. From TEM observation of the AB6 block‐graft copolymers, it turns out to be clear that they show four microphase‐separated structures, S‐spheres, S‐cylinders(S‐prisms), alternative lamellae, and I‐cylinders. Among them, for example, the samples with 0.54 ≤ ?S ≤ 0.58 shows prism structures whose cross sections of the S domains are close to hexagons, not circles, due to packing frustration of grafts. Composition dependence of morphologies of the present AB6 block‐graft copolymers reveals their phase diagram is extremely asymmetric with respect to ?S = 0.5. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 952–960  相似文献   

7.
This paper describes a new way to synthesize rod-coil block copolymers consisting of poly(p-phenylene) (PPP) as rigid rod and either polystyrene (PS) or poly(ethylene oxide) (PEO) as flexible coil. The Suzuki-coupling of the AB-type monomer 4-bromo-2,5-diheptylbenzeneboronic acid (1) under strictly proton-free conditions leads to the control of PPP endgroups and hence allows the synthesis of a variety of differently end-functionalized poly(p-phenylene)s. The poly(2,5-diheptyl-p-phenylene)-block-polystyrene (7) is then prepared via condensation via condensation of anionically polymerized living polystyrene ( 6 ) with α-(4-formylphenyl)-ω-phenyl-poly(2,5diheptyl-p-phenylene) ( 4 ). Toluenesulfonic acid catalyzed condensation of α-methyl-ω-amino-poly(oxyethylene) ( 8 ) with PPP 4 yields poly(2,5-diheptyl-p-phenylene)-block-poly(ethylene oxide) ( 9 ).  相似文献   

8.
Benzyl 6-(2′-pentamethyldisiloxanyl ethyl)-ortho-tolyl ketone (I) was prepared by a ruthenium-catalyzed Murai reaction of benzyl ortho-tolyl ketone with vinyl pentamethyldisiloxane. The reaction of I with a mixture of styrene and a catalytic amount of picoline Cu(II) acetate yielded the telechelic polystyrene α,ω-bis(2-pentamethyl-disiloxanyl ethyl)polystyrene (III). The acid-catalyzed equilibration polymerization of octamethylcyclotetrasiloxane into the Si O Si bonds of telechelic III yielded the polydimethylsiloxane-polystyrene-polydimethylsiloxane triblock soft–hard–soft copolymer. The molecular weights of the copolymers were studied by 1H NMR end-group analysis and gel permeation chromatography. The thermal properties and morphology of IV were examined by differential scanning calorimetry and transmission electron microscopy (TEM). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 482–488, 2000  相似文献   

9.
Block copolymers of polymethylphenylsilane (PMPS) and polystyrene (PS) have been successfully prepared by the condensation of α,ω-dichloro-polymethylphenylsilane with polystyryl-lithium. These new materials have been characterized by UV spectroscopy, 29Si-NMR, and size exclusion chromatography. These block copolymers show a good emulsifying activity to compatibilize blends of the two homopolymers (PMPS and PS). © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The synthesis of amylose–polyester block copolymers is described. 2,3,6-Tri-0-allyl amylose was synthesized by amylose alkoxide and allyl bromide and hydrolyzed by hydronium ions to give an hydroxyl-terminated allyl amylose oligomer (HTAA). The allyl groups were isomerized with t-BuoK to yield the prop-1-enyl isomer (HTPA). The HTPA was capped with a diisocyanate. The HTPA prepolymer was reacted with hydroxy-terminated poly(ethylene-co-propylene adipate) and poly-(ethylene terephthalate) to form block terpolymers. Block terpolymer formation was demonstrated by intrinsic viscosity increases, gel permeation chromatographic results, and infrared (IR) and PMR spectroscopy. The products were depropenylated by HgCl2 to yield amylose block terpolymers. These polymers were readily degraded by α-amylase.  相似文献   

11.
Poly(styrene-b-siloxane) multi-block copolymers have been prepared by polyhydrosilylation reaction. Four copolymers have been synthesized by the reaction of α,ω-bis silane polydimethylsiloxanes with α,ω-bis allyl polystyrene. The latter has been obtained by the reaction of carboxy-telechelic polystyrene with allyl glycidyl ether. 1H NMR and FT-IR analyses show that the polyhydrosilylation reaction is quantitative. The copolymer molecular weights were determined by SEC to be about 25,000 g/mol. The properties of these copolymers were characterized by DSC and DMA analyses. The rubbery plateaus of these copolymers are in the range of −115 °C to 85 °C.  相似文献   

12.
Nylon 6–PIB diblock, triblock, and tristar radial block copolymers have been synthesized from telechelic hydroxyl-terminated polyisobutylene, PIB(OH)n (n = 1,2,3), by conversion of this prepolymer with hexamethylene diisocyanate (HMDI), toluene diisocyanate (TDI), N-chlorocarbonyl diisocyanate (NCCI), and oxalyl chloride (OxCl) and using the resulting materials as macroactivators for anionic caprolactam polymerization. Prepolymers with molecular weights from 6000 to 38,000 have been employed. Derivatization with NCCI and subsequent anionic caprolactam polymerization gave highest yields and blocking efficiencies. The block copolymers have been characterized by molecular weight and composition. In addition to the expected Tg and Tm characteristics of long PIB and nylon 6 segments, DSC studies showed an intermediate glass transition at ca. ?20°C. Transmission electron microscopy of di-, tri-, and radial blocks show increasing segregation and orientation of rubbery/crystalline domains. Tensile strengths and elongations of the block copolymers range from 16.5 to 41 MPa and 15 to 30%, respectively, and stress-strain diagrams show the effect of block architecture on these properties.  相似文献   

13.
New linear polycarbonate-polysiloxanes are synthesized through the heterophase polycondensation of α,ω-bis[3-(4-hydroxy-3-methoxyphenyl)propyl]oligoorganosiloxanes (PSi-bisphenols) with α,ω-bis(chloroformato)oligocarbonates (method I), the phosgenation of PSi-bisphenol-diphenylolpropane mixtures (method II), the interaction of the same bisphenols with bis(4-chloroformatophenyl)propane (method III), and the polycondensation of the latter with PSi-bisphenol-α,ω-dihydroxyoligocarbonate mixtures (method IV). The highest molecular masses (as high as 130 × 103 at a degree of multiblockiness of 11–14 block pairs) are inherent in poly-carbonate-polysiloxanes synthesized by methods II and III; moreover, the same copolymers have the highest mechanical characteristics (σbr and ?br are as high as 48 MPa and 300%, respectively).  相似文献   

14.
The synthesis of multiarm star block (and mixed‐block) copolymers are efficiently prepared by using Cu(I) catalyzed azide‐alkyne click reaction and the arm‐first approach. α‐Silyl protected alkyne polystyrene (α‐silyl‐alkyne‐PS) was prepared by ATRP of styrene (St) and used as macroinitiator in a crosslinking reaction with divinyl benzene to successfully give multiarm star homopolymer with alkyne periphery. Linear azide end‐functionalized poly(ethylene glycol) (PEG‐N3) and poly (tert‐butyl acrylate) (PtBA‐N3) were simply clicked with the multiarm star polymer described earlier to form star block or mixed‐block copolymers in N,N‐dimethyl formamide at room temperature for 24 h. Obtained multiarm star block and mixed‐block copolymers were identified by using 1H NMR, GPC, triple detection‐GPC, atomic force microscopy, and dynamic light scattering measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 99–108, 2010  相似文献   

15.
This paper describes the synthesis of a novel amphiphilic AB2 triarm star-shaped copolymer with A = non-toxic and biocompatible hydrophilic poly(ethylene oxide) (PEO) and B = biodegradable and hydrophobic poly(ε-caprolactone) (PCL). A series of AB2 triarm star-shaped copolymers with different molecular-weights for the PCL block were successfully synthesized by a three-step procedure. α-Methoxy-ω-epoxy-poly(ethylene oxide) (PEO-epoxide) was first synthesized by the nucleophilic substitution of α-methoxy-ω-hydroxy-poly(ethylene oxide) (MPEO) on epichlorohydrin. In a second step, the α-methoxy-ω,ω′-dihydroxy-poly(ethylene oxide) (PEO(OH)2) macroinitiator was prepared by the selective hydrolysis of the ω-epoxy end-group of the PEO-epoxide chain. Finally, PEO(OH)2 was used as a macroinitiator for the ring-opening polymerization (ROP) of ε-caprolactone (εCL) catalyzed by tin octoaote (Sn(Oct)2). PEO-epoxide, PEO(OH)2 and the AB2 triarm star-shaped copolymers were assessed by 1H NMR spectroscopy, size exclusion chromatography (SEC) and MALDI-TOF. The behavior of the AB2 triarm star-shaped copolymer in aqueous solution was studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM).  相似文献   

16.
Five well-defined polystyrene-block-polyoxyethylene copolymers were synthesized by anionic polymerization for use as stabilizers in the emulsion polymerization of styrene. The size of the blocks and their relative weight ratios to each other were the main variables. The molecular weights of the blocks varied from M?n = 1000–7000 for polystyrene, and M?w = 3000–9000 for polyoxyethylene. The results of the styrene emulsion polymerization with these block copolymers as stabilizers indicate that for efficient anchoring the block length need not be more than 10 monomer units, possibly even less, and that the polyoxyethylene block M?w = 3000 is just as capable of stabilizing the polystyrene particle as the higher molecular weight blocks. A very important factor was found to be the weight ratio of the two blocks: block copolymers with a polyoxyethylene content between 75 and 90 wt % were effective stabilizers for the emulsion polymerization of styrene © 1992 John Wiley & Sons, Inc.  相似文献   

17.
The 3‐miktoarm star‐shaped ABC copolymers of polystyrene–poly(ethylene oxide)–poly(ethoxyethyl glycidyl ether) (PS‐PEO‐PEEGE) and polystyrene–poly(ethylene oxide)–polyglycidol (PS‐PEO‐PG) with low polydispersity indices (PDI ≤ 1.12) and controlled molecular weight were synthesized by a combination of anionic polymerization with ring‐opening polymerization. The polystyryl lithium (PSLi+) was capped by EEGE firstly to form the functionalized polystyrene (PSA) with both an active ω‐hydroxyl group and an ω′‐ethoxyethyl‐protected hydroxyl group, and then the PS‐b‐PEO block copolymers, star(PS‐PEO‐PEEGE) and star(PS‐PEO‐PG) copolymers were obtained by the ring‐opening polymerization of EO and EEGE respectively via the variation of the functional end group, and then the hydrolysis of the ethoxyethyl group on the PEEGE arm. The obtained star copolymers and intermediates were characterized by 1H NMR spectroscopy and SEC.

  相似文献   


18.
Several new macroinitiators and macromerinitiators (macroinimers) were synthesized and evaluated for the bulk polymerization of sytrene at 60°C. Macroinitiators were prepared from the reaction of 4,4′-dicyano-4,4′ azovaleryl chloride ( 1 ) with poly(ethylene glycol) (PEG) with a Mω of 400 and with either benzoyl chloride, acetyl chloride, phenyl isocyanate, or poly(ethylene glycol) oleyl ether. Macromer initiators were also prepared from the reaction of 1 with PEG having Mω values of 200, 400, 600, 1000, or 1500 and with 4-vinylbenzyl chloride. The bulk polymerization of styrene by macroinimers gave crosslinked styrene-PEG block copolymers, while the polymerization by macroinitiators gave soluble copolymers. The molecular weights of the styrene-PEG block copolymers obtained with macroinitiators having either oleyl, benzoyl, or phenyl urethane end groups were 22000–29000 g/mol. DSC measurements showed that the crosslinked block copolymers had crystalline PEG units with melting transitions ranging from 11–37°C. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Molecular motions of hydrophobic–hydrophilic water-soluble block copolymers in solution were investigated by high-resolution proton magnetic resonance (NMR). Samples studied include block copolymers of polystyrene–poly(ethylene oxide), polybutadiene–poly(ethylene oxide), and poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide). NMR measurements were carried out varying molecular weight, temperature, and solvent composition. For AB copolymers of polystyrene and poly(ethylene oxide), two peaks caused by the phenyl protons of low-molecular-weight (M?n = 3,300) copolymer were clearly resolved in D2O at 100°C, but the phenyl proton peaks of high-molecular-weight (M?n = 13,500 and 36,000) copolymers were too broad to observe in the same solvent, even at 100°C. It is concluded that polystyrene blocks are more mobile in low-molecular-weight copolymer in water than in high-molecular-weight copolymer in the same solvent because the molecular weight of the polystyrene block of the low-molecular-weight copolymer is itself small. In the mixed solvent D2O and deuterated tetrahydrofuran (THF-d8), two peaks caused by the phenyl protons of the high-molecular-weight (M?n = 36,000) copolymer were clearly resolved at 67°C. It is thought that the molecular motions of the polystyrene blocks are activated by the interaction between these blocks and THF in the mixed solvent.  相似文献   

20.
Block polymers of polystyrene and bisphenol A polycarbonate have been prepared and their bulk viscosities studied as functions of both shear stress and polystyrene block length. The polystyrene blocks were α,ω-diacid chlorides prepared from the reaction of “living” polystyrenes with diacid chlorides. These reactions were studied in order to discover the most effective way of preparing the polystyrene diacid chlorides. The polystyrene diacid chlorides are best prepared by reaction of disodiopolystyrene with phosgene. The flow properties of the block copolymers depend on the composition of the polymers but do not depend on the length of the polystyrene blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号