首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of effective neighborhood structures is fundamentally important for creating better local search and metaheuristic algorithms for combinatorial optimization. Significant efforts have been made to develop larger and more powerful neighborhoods that are able to explore the solution space more effectively while keeping computation complexity within acceptable levels. The most important advances in this domain derive from dynamic and adaptive neighborhood constructions originating in ejection chain methods and a special form of a candidate list design that constitutes the core of the filter-and-fan method. The objective of this paper is to lay out the general framework of the ejection chain and filter-and-fan methods and present applications to a number of important combinatorial optimization problems. The features of the methods that make them effective in these applications are highlighted to provide insights into solving challenging problems in other settings.  相似文献   

2.
The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. Extensive investigation has been devoted to developing efficient algorithms to find optimal or near-optimal solutions. This paper proposes a new heuristic algorithm for the JSSP that effectively combines the classical shifting bottleneck procedure (SBP) with a dynamic and adaptive neighborhood search procedure. Our new search method, based on a filter-and-fan (F&F) procedure, uses the SBP as a subroutine to generate a starting solution and to enhance the best schedules produced. The F&F approach is a local search procedure that generates compound moves by a strategically abbreviated form of tree search. Computational results carried out on a standard set of 43 benchmark problems show that our F&F algorithm performs more robustly and effectively than a number of leading metaheuristic algorithms and rivals the best of these algorithms.  相似文献   

3.
The generalized assignment problem is a classical combinatorial optimization problem known to be NP-hard. It can model a variety of real world applications in location, allocation, machine assignment, and supply chains. The problem has been studied since the late 1960s, and computer codes for practical applications emerged in the early 1970s. We propose a new algorithm for this problem that proves to be more effective than previously existing methods. The algorithm features a path relinking approach, which is a mechanism for generating new solutions by combining two or more reference solutions. It also features an ejection chain approach, which is embedded in a neighborhood construction to create more complex and powerful moves. Computational comparisons on benchmark instances show that the method is not only effective in general, but is especially effective for types D and E instances, which are known to be very difficult.  相似文献   

4.
Variable neighborhood search: Principles and applications   总被引:5,自引:0,他引:5  
Systematic change of neighborhood within a possibly randomized local search algorithm yields a simple and effective metaheuristic for combinatorial and global optimization, called variable neighborhood search (VNS). We present a basic scheme for this purpose, which can easily be implemented using any local search algorithm as a subroutine. Its effectiveness is illustrated by solving several classical combinatorial or global optimization problems. Moreover, several extensions are proposed for solving large problem instances: using VNS within the successive approximation method yields a two-level VNS, called variable neighborhood decomposition search (VNDS); modifying the basic scheme to explore easily valleys far from the incumbent solution yields an efficient skewed VNS (SVNS) heuristic. Finally, we show how to stabilize column generation algorithms with help of VNS and discuss various ways to use VNS in graph theory, i.e., to suggest, disprove or give hints on how to prove conjectures, an area where metaheuristics do not appear to have been applied before.  相似文献   

5.
Constraint programming and local search are two well known optimization technologies. In recent years, methods for combining these two technologies have been put forward, one of which advocates the use of constraint programming for searching the local neighborhood of the current solution. We present a search technique which improves on the performance of this constraint programming-based local search method and perform experiments on a variety of both simple and more complex combinatorial problems. We also demonstrate the benefit of combining local and complete search methods.  相似文献   

6.
A comparison of local search methods for flow shop scheduling   总被引:1,自引:0,他引:1  
Local search techniques are widely used to obtain approximate solutions to a variety of combinatorial optimization problems. Two important categories of local search methods are neighbourhood search and genetic algorithms. Commonly used neighbourhood search methods include descent, threshold accepting, simulated annealing and tabu search. In this paper, we present a computational study that compares these four neighbourhood search methods, a genetic algorithm, and a hybrid method in which descent is incorporated into the genetic algorithm. The performance of these six local search methods is evaluated on the problem of scheduling jobs in a permutation flow shop to minimize the total weighted completion time. Based on the results of extensive computational tests, simulated annealing is found to generate better quality solutions than the other neighborhood search methods. However, the results also indicate that the hybrid genetic descent algorithm is superior to simulated annealing.  相似文献   

7.
In practice, solving realistically sized combinatorial optimization problems to optimality is often too time-consuming to be affordable; therefore, heuristics are typically implemented within most applications software. A specific category of heuristics has attracted considerable attention, namely local search methods. Most local search methods are primal in nature; that is, they start the search with a feasible solution and explore the feasible space for better feasible solutions. In this research, we propose a dual local search method and customize it to solve the traveling salesman problem (TSP); that is, a search method that starts with an infeasible solution, explores the dual space—each time reducing infeasibility, and lands in the primal space to deliver a feasible solution. The proposed design aims to replicate the designs of optimal solution methodologies in a heuristic way. To be more specific, we solve a combinatorial relaxation of a TSP formulation, design a neighborhood structure to repair such an infeasible starting solution, and improve components of intermediate dual solutions locally. Sample-based evidence along with statistically significant t-tests support the superiority of this dual design compared to its primal design counterpart.  相似文献   

8.
Combinatorial optimization problems have applications in a variety of sciences and engineering. In the presence of data uncertainty, these problems lead to stochastic combinatorial optimization problems which result in very large scale combinatorial optimization problems. In this paper, we report on the solution of some of the largest stochastic combinatorial optimization problems consisting of over a million binary variables. While the methodology is quite general, the specific application with which we conduct our experiments arises in stochastic server location problems. The main observation is that stochastic combinatorial optimization problems are comprised of loosely coupled subsystems. By taking advantage of the loosely coupled structure, we show that decomposition-coordination methods provide highly effective algorithms, and surpass the scalability of even the most efficiently implemented backtracking search algorithms.  相似文献   

9.
We propose in this paper a novel integration of local search algorithms within a constraint programming framework for combinatorial optimization problems, in an attempt to gain both the efficiency of local search methods and the flexibility of constraint programming while maintaining a clear separation between the constraints of the problem and the actual search procedure. Each neighborhood exploration is performed by branch-and-bound search, whose potential pruning capabilities open the door to more elaborate local moves, which could lead to even better approximate results. Two illustrations of this framework are provided, including computational results for the traveling salesman problem with time windows. These results indicate that it is one order of magnitude faster than the customary constraint programming approach to local search and that it is competitive with a specialized local search algorithm.  相似文献   

10.
Interest in the design of efficient meta-heuristics for the application to combinatorial optimization problems is growing rapidly. The optimal design of water distribution networks is an important optimization problem which consists of finding the best way of conveying water from the sources to the users, thus satisfying their requirements. The efficient design of looped networks is a much more complex problem than the design of branched ones, but their greater reliability can compensate for the increase in cost when closing some loops. Mathematically, this is a non-linear optimization problem, constrained to a combinatorial space, since the diameters are discrete and it has a very large number of local solutions. Many works have dealt with the minimization of the cost of the network but few have considered their cost and reliability simultaneously. The aim of this paper is to evaluate the performance of an implementation of Scatter Search in a multi-objective formulation of this problem. Results obtained in three benchmark networks show that the method here proposed performs accurately well in comparison with other multi-objective approaches also implemented.  相似文献   

11.
In this article, local optimality in multiobjective combinatorial optimization is used as a baseline for the design and analysis of two iterative improvement algorithms. Both algorithms search in a neighborhood that is defined on a collection of sets of feasible solutions and their acceptance criterion is based on outperformance relations. Proofs of the soundness and completeness of these algorithms are given.  相似文献   

12.
This paper deals with exponential neighborhoods for combinatorial optimization problems. Exponential neighborhoods are large sets of feasible solutions whose size grows exponentially with the input length. We are especially interested in exponential neighborhoods over which the TSP (respectively, the QAP) can be solved in polynomial time, and we investigate combinatorial and algorithmical questions related to such neighborhoods.?First, we perform a careful study of exponential neighborhoods for the TSP. We investigate neighborhoods that can be defined in a simple way via assignments, matchings in bipartite graphs, partial orders, trees and other combinatorial structures. We identify several properties of these combinatorial structures that lead to polynomial time optimization algorithms, and we also provide variants that slightly violate these properties and lead to NP-complete optimization problems. Whereas it is relatively easy to find exponential neighborhoods over which the TSP can be solved in polynomial time, the corresponding situation for the QAP looks pretty hopeless: Every exponential neighborhood that is considered in this paper provably leads to an NP-complete optimization problem for the QAP. Received: September 5, 1997 / Accepted: November 15, 1999?Published online February 23, 2000  相似文献   

13.
Descent methods for combinatorial optimization proceed by performing a sequence of local changes on an initial solution which improve each time the value of an objective function until a local optimum is found. Several metaheuristics have been proposed which extend in various ways this scheme and avoid being trapped in local optima. For example, Hansen and Mladenovic have recently proposed the variable neighborhood search method which has not yet been applied to many combinatorial optimization problems. The aim of this paper is to propose an adaptation of this new method to the graph coloring problem.  相似文献   

14.
Fitness landscape theory is a mathematical framework for numerical analysis of search algorithms on combinatorial optimization problems. We study a representation of fitness landscape as a weighted directed graph. We consider out forest and in forest structures in this graph and establish important relationships among the forest structures of a directed graph, the spectral properties of the Laplacian matrices, and the numbers of local optima of the landscape. These relationships provide a new approach for computing the numbers of local optima for various problem instances and neighborhood structures.  相似文献   

15.
Protein Conformation of a Lattice Model Using Tabu Search   总被引:1,自引:0,他引:1  
We apply tabu search techniques to the problem of determining the optimal configuration of a chain of protein sequences on a cubic lattice. The problem under study is difficult to solve because of the large number of possible conformations and enormous amount of computations required. Tabu search is an iterative heuristic procedure which has been shown to be a remarkably effective method for solving combinatorial optimization problems. In this paper, an algorithm is designed for the cubic lattice model using tabu search. The algorithm has been tested on a chain of 27 monomers. Computational results show that our method outperforms previously reported approaches for the same model.  相似文献   

16.
One-dimensional cutting stock problem (1D-CSP) is one of the representative combinatorial optimization problems, which arises in many industrial applications. Since the setup costs for switching different cutting patterns become more dominant in recent cutting industry, we consider a variant of 1D-CSP, called the pattern restricted problem (PRP), to minimize the number of stock rolls while constraining the number of different cutting patterns within a bound given by users. For this problem, we propose a local search algorithm that alternately uses two types of local search processes with the 1-add neighborhood and the shift neighborhood, respectively. To improve the performance of local search, we incorporate it with linear programming (LP) techniques, to reduce the number of solutions in each neighborhood. A sensitivity analysis technique is introduced to solve a large number of associated LP problems quickly. Through computational experiments, we observe that the new algorithm obtains solutions of better quality than those obtained by other existing approaches.  相似文献   

17.
A greedy randomized adaptive search procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications of the construction procedure yields different starting solutions for the local search and the best overall solution is kept as the result. The GRASP local search applies iterative improvement until a locally optimal solution is found. During this phase, starting from the current solution an improving neighbor solution is accepted and considered as the new current solution. In this paper, we propose a variant of the GRASP framework that uses a new “nonmonotone” strategy to explore the neighborhood of the current solution. We formally state the convergence of the nonmonotone local search to a locally optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP on three classical hard combinatorial optimization problems: the maximum cut problem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and the quadratic assignment problem (QAP).  相似文献   

18.
Most of the well known methods for solving multi-objective combinatorial optimization problems deal with only two objectives. In this paper, we develop a metaheuristic method for solving multi-objective assignment problems with three or more objectives. This method is based on the dominance cost variant of the multi-objective simulated annealing (DCMOSA) and hybridizes neighborhood search techniques which consist of either a local search or a multi-objective branch and bound search (here the multi-objective branch and bound search is used as a local move to a fragment of a solution).  相似文献   

19.
Large neighborhood search (LNS) is a combination of constraint programming (CP) and local search (LS) that has proved to be a very effective tool for solving complex optimization problems. However, the practice of applying LNS to real world problems remains an art which requires a great deal of expertise. In this paper, we show how adaptive techniques can be used to create algorithms that adjust their behavior to suit the problem instance being solved. We present three design principles towards this goal: cost-based neighborhood heuristics, growing neighborhood sizes, and the application of learning algorithms to combine portfolios of neighborhood heuristics. Our results show that the application of these principles gives strong performance on a challenging set of job shop scheduling problems. More importantly, we are able to achieve robust solving performance across problem sets and time limits. This material is based upon works supported by the Science Foundation Ireland under Grant No. 00/PI.1/C075, the Embark Initiative of the Irish Research Council of Science Engineering and Technology under Grant PD2002/21, and ILOG, S.A.  相似文献   

20.
In this article we investigate a new variant of Variable Neighborhood Search (VNS): Relaxation Guided Variable Neighborhood Search. It is based on the general VNS scheme and a new Variable Neighborhood Descent (VND) algorithm. The ordering of the neighborhood structures in this VND is determined dynamically by solving relaxations of them. The objective values of these relaxations are used as indicators for the potential gains of searching the corresponding neighborhoods. We tested this new approach on the well-studied multidimensional knapsack problem. Computational experiments show that our approach is beneficial to the search, improving the obtained results. The concept is, in principle, more generally applicable and seems to be promising for many other combinatorial optimization problems approached by VNS. NICTA is funded by the Australian Government’s Backing Australia’s Ability initiative, in part through the Australian Research Council.The Institute of Computer Graphics and Algorithms is supported by the European RTN ADONET under grant 504438.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号