首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
The supra-atomic structure of single crystals of synthetic quartz with a dislocation density of 54 cm?2 in their initial state and after irradiation in a VVR-M reactor by fast neutrons with the energy, E n > 0.1 MeV, at fluences of 2.3 × 1019 and 4.5 × 1019 N/cm2, has been studied by the method of small-angle thermal neutron scattering. It has been established that fast neutrons create point, linear, and bulk defects throughout the entire material. It has been shown that extended defects have a significant integral length per volume unit equal to ??3 × 1011 cm/cm3, and can form a consolidated network in the sample with a cell size of ??30 nm, through the channels of which the migration of impurity atoms and molecules is possible.  相似文献   

2.
316 stainless steel has been irradiated with 5 MeV Cu ions to a fluence of 2 × 1016 ions/cm2 at 500°C. Transmission electron microscopy of this sample reveals that 6 × 1015 voids/cm2 of average diameter equal to 180 Å were produced. A method for correlating the fluence of ions with equivalent neutron fluences is described. This method predicts that the Cu bombardment in this study should produce a microstructure similar to that found in steel irradiated with 2–5 × 1122 neutrons/cm2. A comparison of the ion produced voids with those found after previous neutron irradiation experiments confirms this prediction.  相似文献   

3.
Samples from polycarbonate/poly (butylene terephthalate) (PC/PBT) blends film have been irradiated using different fluences (1?×?1015– 5?×?1017 H+/cm2) of 1?MeV protons at the University of Surrey Ion Beam Center, UK. The structural modi?cations in the proton irradiated samples have been studied as a function of fluence using different characterization techniques such as X-ray diffraction and UV spectroscopy. The results indicate that the proton irradiation reduces the optical energy gap that could be attributed to the increase in structural disorder of the irradiated samples due to crosslinking. Furthermore, the color intensity ΔE, which is the color difference between the non-irradiated sample and those irradiated with different proton fluences, increased with increasing the proton fluence up to 5?×?1017 H+/cm2, convoyed by an increase in the red and yellow color components. In addition, the resultant effect of proton irradiation on the thermal properties of the PC/PBT samples has been investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It is found that the PC/PBT decomposes in one weight loss stage. Also, the variation of transition temperatures with proton fluence has been determined using DSC. The PC/PBT thermograms were characterized by the appearance of two endothermic peaks due to the glass transition and melting temperatures. The melting temperature of the polymer, Tm, was investigated to probe the crystalline domains of the polymer, since the proton irradiation destroys the crystalline structure so reducing the melting temperature.  相似文献   

4.
The vitreous SiO2 samples irradiated with fast neutrons at a dose of 5×1017?2.2×1020 per cm2 are investigated by the Raman scattering technique. It is demonstrated that the maximum of the low-frequency Raman spectrum (boson peak) shifts with an increase in the irradiation dose, and the medium-range order size decreases from 25 Å for the initial glass to 19 Å for the sample subjected to irradiation at a maximum dose. It is revealed that the fast relaxation intensity obtained from analysis of the low-frequency Raman spectra linearly correlates with the specific volume of the studied samples.  相似文献   

5.
Nanocomposite polymer electrolyte thin films of polyvinyl alcohol (PVA)-orthophosphoric acid (H3PO4)-Al2O3 have been prepared by solution cast technique. Films are irradiated with 50 MeV Li3+ ions having four different fluences viz. 5?×?1010, 1?×?1011, 5?×?1011, and 1?×?1012 ions/cm2. The effect of irradiation on polymeric samples has been studied and characterized. X-ray diffraction spectra reveal that percent degree of crystallinity of samples decrease with ion fluences. Glass transition and melting temperatures have been also decreased as observed in differential scanning calorimetry. A possible complexation/interaction has been shown by Fourier transform infrared spectroscopy. Temperature-dependent ionic conductivity shows an Arrhenius behavior before and after glass transition temperature. It is observed that ionic conductivity increases with ion fluences and after a critical fluence, it starts to decrease. Maximum ionic conductivity of ~2.3?×?10?5 S/cm owing to minimum activation energy of ~0.012 eV has been observed for irradiated electrolyte sample at fluence of 5?×?1011 ions/cm2. The dielectric constant and dielectric loss also increase with ion fluences while they decrease with frequency. Transference number of ions shows that the samples are of purely ionic in nature before and after ion irradiation.  相似文献   

6.
The β-SiC nanocrystals were synthesized by the implantation of carbon ions (C) into silicon followed by high-temperature annealing. The carbon fluences of 1×1017, 2×1017, 5×1017, and 8×1017 atoms/cm2 were implanted at an ion energy of 65 keV. It was observed that the average size of β-SiC crystals decreased and the amount of β-SiC crystals increased with the increase in the implanted fluences when the samples were annealed at 1100 °C for 1 h. However, it was observed that the amount of β-SiC linearly increased with the implanted fluences up to 5×1017 atoms/cm2. Above this fluence the amount of β-SiC appears to saturate. The Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, and X-ray diffraction (XRD) techniques were used to characterize the samples.  相似文献   

7.
Large dimensional expansion has been observed at room temperature in erbium metal films implanted at room temperature with high fluences of helium. The interferometrically measured film thickness increases linearly with fluence up to a critical dose of 3 × 1017 He+/cm2 (E = 160 keV) and is superlinear at higher fluences. Annealing at 400°C causes a reduction of the induced expansion for fluences below the critical dose without apparent release of helium. Annealing of samples implanted to fluences greater than 3.5 × 1017 He+/cm2 causes accentuated expansion which is accompanied by formation and rupture of bubbles at the film surface.  相似文献   

8.
The superatomic structure of synthetic quartz single crystals with dislocation densities ρ = 54 and 570 cm?2 was studied in the initial state and after irradiation with fast neutrons with energies E n > 0.1 MeV in a WWRM reactor (St. Petersburg Nuclear Physics Institute) in the fluence range F = 0.2 × 1017?5.0 × 1018 neutrons/cm2. Weak irradiation with F = 0.2 × 1017 neutrons/cm2 causes only slight structural changes, whereas appreciable generation of defects with radii of gyration r g ~ 1–2 nm and R G ~ 40–50 nm occurs at F = 7.7 × 1017?5.0 × 1018 neutrons/cm2. As the fluence increases further, the number and volume fraction of point defects, as well as extended (channels ~2 nm in radius) and globular (amorphous phase nuclei) defects, increase.  相似文献   

9.
We have measured the low-frequency Raman scattering in neutron-irradiated quartz crystals with four different irradiation doses from 4.7×1019 n/cm2 to 1×1020 n/cm2 and for 2 different crystallographic directions. For the used doses the range of density change of the investigated samples was 12% (the maximum change during amorphization is 14%) and the amorphous fraction varied from 35% to 100%. The same measurement was done in neutron-irradiated amorphous silica with a maximal dose 2×1020 n/cm2. In all cases we observed the boson peak in the Raman spectra. The position of the peak, at 67±3 cm-1, was found to be the same for all the investigated samples independent of the dose. The shape of the peak for doses 6.8× 1019 n/cm2 and higher was also found to be the same for 5 investigated samples (including irradiated vitreous silica). We found that the position of the boson peak in neutron-irradiated quartz crystals and vitreous silica corresponds to the Ioffe-Regel crossover frequency for phonons. The origin of the boson peak in neutron-irradiated quartz and vitreous silica can be attributed to local soft optic modes, which are analogous to the soft optic mode that drives the α–β transition in quartz.  相似文献   

10.
Fullerenes C60 and C70 synthesized by the electric arc method and fractionated (purity grades of 99.99 and 99.90 wt %, respectively) were irradiated in a solid phase in the WWR-M reactor (Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute,” Gatchina, Russia) with the aim of determining the survivability in the range of fast neutron fluences Φ = 4 × 1015?3 × 1017 n/cm2. The irradiated samples were dissolved in carbon disulfide, and intact fullerenes were extracted. With an increase in the fluence, their weight fraction in the samples S(Φ), a measure of radiation resistance of molecules, decreased, to a first approximation, exponentially: S(Φ) = exp(?Φ/Φ D ). The estimated characteristic fluences were Φ D = 2.4 × 1017 and 4.0 × 1017 n/cm2 for C60 and C70, respectively.  相似文献   

11.
ABSTRACT

In the present work, effects of silicon negative ion implantation into semi-insulating gallium arsenide (GaAs) samples with fluences varying between 1?×?1015 and 4?×?1017?ions?cm?2 at 100?keV have been described. Atomic force microscopic images obtained from samples implanted with fluence up to 1?×?1017?ion?cm?2 showed the formation of GaAs clusters on the surface of the sample. The shape, size and density of these clusters were found to depend on ion fluence. Whereas sample implanted at higher fluence of 4?×?1017?ions?cm?2 showed bump of arbitrary shapes due to cumulative effect of multiple silicon ion impact with GaAs on the same place. GXRD study revealed formation of silicon crystallites in the gallium arsenide sample after implantation. The silicon crystallite size estimated from the full width at half maxima of silicon (111) XRD peak using Debye-Scherrer formula was found to vary between 1.72 and 1.87?nm with respect to ion fluence. Hall measurement revealed the formation of n-type layer in gallium arsenide samples. The current–voltage measurement of the sample implanted with different fluences exhibited the diode like behavior.  相似文献   

12.
The supra-atomic structure in samples of the SAV-1 alloy (unirradiated and irradiated with fast neutron fluences of 3.48 × 1022 n/cm2) has been investigated using small-angle neutron scattering. It has been found that, in the irradiated material, the volume fraction of scattering structures (pores) with a radius of 40–50 nm significantly decreases, which is compensated to a large extent by an increase in the total fraction of these objects with a radius of less than 20 nm. The results of neutron scattering investigations correlate with the data of mechanical tests of the irradiated alloys and with the changes in their elemental composition.  相似文献   

13.
The effect of formation of a nanocrystalline structure in the near-surface layer of platimun (99.99%) as a result of 30-keV Ar ion bombardment up to fluences of 1016–1017 cm?2 was discovered by the direct method of field ion microscopy. The spatial distribution and structure of radiation damage in Pt was established in the case where Pt is bombarded by fast neutrons (E > 0.1 MeV) up to fluences of 6.7 × 1017 and 3.5 × 1018 cm?2 in the RWW-2M reactor at a temperature of ~310 K.  相似文献   

14.
Abstract

Au/n-GaAs Schottky Barrier Diodes (SBDs) have been fabricated on LEC grown silicon doped (100) GaAs single crystals. The SBDs were irradiated using high energy (120 MeV) silicon ion with fluences of 1 × 10 11 and 1 × 1012 ions/cm2. Current-Voltage (I-V) characteristics of unirradiated and irradiated diodes were analyzed. The change in the reverse leakage current increases with increasing ion fluence. This is due to the irradiation induced defects at the interface and its increase with the fluence. The diodes were annealed at 573 and 673 K. to study the effect of annealing. The rectifying behavior of the irradiated (fluence of 1 × 1012 ions/cm12) SBDs improves upon as the annealing temperature increases and is attributed to the in situ self-annealing during irradiation. Scanning Electron Microscopic analysis was carried out on the irradiated samples to delineate the projected range and to observe defects.  相似文献   

15.
Nickel 270 (99.98 per cent nominal purity) was irradiated in EBR-II to fluences ranging from 1 × 1018 to 1.5 × 1022 neutrons/cm2 at temperatures between 375 and 525°C. Voids were observed in all specimens in concentrations of 1 to 3 × 1014/cm3, independent of temperature and fluence. At low fluences the voids were non-homogeneously distributed. These observations are interpreted in terms of void nucleation on sites existing in the material prior to irradiation. The results are compared with other observations on nickel of comparable and higher purity. Large differences exist not only in the magnitude of void concentrations but also in temperature and fluence dependencies. These differences indicate that a single, void nucleation mechanism is not operative and that impurities play an important role in determining the nature and amount of damage produced by neutron irradiation at elevated temperatures.  相似文献   

16.
The free volume of the microvoids in the polyimide samples, irradiated with 6 MeV electrons, was measured by the positron annihilation technique. The free volume initially decreased the virgin value from ~13.70 to ~10.98 Å3 and then increased to ~18.11 Å3 with increasing the electron fluence, over the range of 5?×?1014 – 5?×?1015 e/cm2. The evolution of gaseous species from the polyimide during electron irradiation was confirmed by the residual gas analysis technique. The polyimide samples irradiated with 6 MeV electrons in AgNO3 solution were studied with the Rutherford back scattering technique. The diffusion of silver in these polyimide samples was observed for fluences >2?×?1015 e/cm2, at which microvoids of size ≥3 Å are produced. Silver atoms did not diffuse in the polyimide samples, which were first irradiated with electrons and then immersed in AgNO3 solution. These results indicate that during electron irradiation, the microvoids with size ≥3 Å were retained in the surface region through which silver atoms of size ~2.88 Å could diffuse into the polyimide. The average depth of diffusion of silver atoms in the polyimide was ~2.5 μm.  相似文献   

17.
Abstract

The defects in n-GaP crystals irradiated by 2.3 MeV electrons up to 1 × 1019 cm?2 at RT were studied by means of positron annihilation (angular correlation) and electrical property measurements. It was found that positrons are trapped in some radiation-induced vacancy-type defects (acceptors) but that the effect saturates at high electron fluences (D1 × 1018 cm?2). The trapping rate in irradiated samples increases with temperature in the range 77–300 K. Post-irradiation isochronal annealing reveals the positron traps clustering at about 200–280°C. All positron sensitive radiation-induced defects disappear upon annealing up to 500°C.  相似文献   

18.
ABSTRACT

Tungsten (W) has been regarded as one of the most promising plasma facing materials (PFMs) in fusion reactors. The formation of bubbles and blisters during hydrogen (H) irradiation will affect the properties of W. The dependence of implantation conditions, such as fluence and energy, is therefore of great interest. In this work, polycrystalline tungsten samples were separated into two groups for study. The thick samples were implanted by 18?keV H3+ ions to fluences of 1?×?1018, 1?×?1019 and 1?×?1020 H+/cm2, respectively. Another thick sample was also implanted by 80?keV H2+ ions to a fluence of 2?×?1017 H+/cm2 for comparison. Moreover, the thin samples were implanted by 18?keV H3+ ions to fluences of 9.38?×?1016, 1.88?×?1017 and 5.63?×?1017 H+/cm2, respectively. Focused ion beam (FIB) combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for micro-structure analysis, while time-of-flight ion mass spectrometry (ToF-SIMS) was used to characterize the H depth profile. It is indicated that bubbles and blisters could form successively with increasing H+ fluence. H bubbles are formed at a fluence of ~5.63?×?1017 H+/cm2, and H blisters are formed at ~1?×?1019 H+/cm2 for 18?keV H3+ implantation. On the other hand, 80?keV H2+ ions can create more trapping sites in a shallow projected range, and thus enhancing the blisters formation with a relatively lower fluence of 2?×?1017?H+/cm2. The crack-like microstructures beneath the blisters are also observed and prefer to form on the deep side of the implanted range.  相似文献   

19.
It has been shown that post-radiation annealing of LiF crystals irradiated by high neutron fluences (1015–1018 neutrons/cm2) at comparative low temperatures (300–400°C) creates optimal conditions for single-system dislocation glide, which favors a complete recovery of the plasticity with conservation of a significant fraction of radiation hardening.  相似文献   

20.
Abstract

A detailed deep level transient spectroscopy (DLTS) study has been carried out on a prominant hole trap at 0.34 eV above the valence band in irradiated p-type silicon. The boron concentration in the float zone and Czochralski-grown samples varied between 1012 and 1016 cm?3, and irradiations with 2.0 MeV electrons have been performed at nominal room temperature to total fluences of 1.0 × 1016 and 1.0 × 1017 e?/cm2. The introduction rate of the trap is strongly boron-dependent, while the oxygen content in the samples does not influence neither the trap production rate nor its observed annealing behaviour. In the light of these observations and other available data on this trap, a boron-carbon pair is here tentatively proposed as the defect identity. A previously unreported hole trap at 0.45 eV above the valence band has also been observed in this work in highly boron-doped material. The isothermal and isochronal annealing characteristics of both traps have been investigated up to 400°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号