首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we analyze the effect of a combined pure homogeneous strain and simple shear in a principal plane of the latter on the propagation of surface waves for an incompressible isotropic elastic half-space whose boundary is normal to the glide planes of the shear. This generalizes previous work in which, separately, pure homogeneous strain and simple shear were considered. For a special class of materials, the secular equation is obtained in explicit form and then specialized to recover results obtained previously for the two cases mentioned above. A method for obtaining the secular equation for a general form of strain–energy function is then outlined. In general, this is very lengthy and the result is not listed, but, for the case in which there is no normal stress on the half-space boundary, the result is given, for illustration, in respect of the so-called generalized Varga material. Numerical results are given to show how the surface wave speed depends on both the underlying pure homogeneous strain and the superimposed simple shear. Further numerical results are provided for the Gent model of limiting chain extensibility.  相似文献   

2.
In the plane-strain conditions of a long cylinder in rolling line contact with an elastic-perfectly-plastic half-space an exact shakedown limit has been established previously by use of both the statical (lower bound) and kinematical (upper bound) shakedown theorems. At loads above this limit incremental strain growth or “ratchetting” takes place by a mechanism in which surface layers are plastically sheared relative to the subsurface material.In this paper the kinematical shakedown theorem is used to investigate this mode of deformation for rolling and sliding point contacts, in which a Hertz pressure and frictional traction act on an elliptical area which repeatedly traverses the surface of a half-space. Although a similar mechanism of incremental collapse is possible, the behaviour is found to be different from that in two-dimensional line contact in three significant ways: (i) To develop a mechanism for incremental growth the plastic shear zone must spread to the surface at the sides of the contact so that a complete segment of material immediately beneath the loaded area is free to displace relative to the remainder of the half-space, (ii) Residual shear stresses orthogonal to the surface are developed in the subsurface layers, (iii) A range of loads is found in which a closed cycle of alternating plasticity takes place without incremental growth, a condition often referred to as “plastic shakedown”.Optimal upper bounds to both the elastic and plastic shakedown limits have been found for varying coefficients of traction and shapes of the loaded ellipse. The analysis also gives estimates of the residual orthogonal shear stresses which are induced.  相似文献   

3.
The present paper is concerned with the propagation of torsional surface waves in a heterogeneous anisotropic half-space under the initial compressive stress. The heterogeneity in the half-space is caused by the linear variation in rigidity, initial compressive stress and density. The solution part of the problem involves the use of Whittaker function. The dispersion equation has been obtained in a closed form, which shows the variation of phase velocity with corresponding wave number. Effects of anisotropy and initial stress have been shown by the means of graphs for different anisotropic materials. It has found that the phase velocity of torsional waves decreases with increment in initial stress and inhomogeneity. Obtained phase velocity of torsional surface wave is found to be less than the shear wave velocity, which agrees with the standard result.  相似文献   

4.
This paper presents analytical Green’s function solutions for an isotropic elastic half-space subject to anti-plane shear deformation. The boundary of the half-space is modeled as a material surface, for which the Gurtin–Murdoch theory for surface elasticity is employed. By using Fourier cosine transform, analytical solutions for a point force applied both in the interior or on the boundary of the half-space are derived in terms of two particular integrals. Through simple numerical examples, it is shown that the surface elasticity has an important influence on the elastic field in the half-space. The present Green’s functions can be used in boundary element method analysis of more complicated problems.  相似文献   

5.
The existence of SH surface waves in a half-space homogeneous material (i.e. anti-plane shear wave motions which decay exponentially with the distance from the free surface) is shown to be possible within the framework of the generalized linear continuum theory of gradient elasticity with surface energy. As is well-known such waves cannot be predicted by the classical theory of linear elasticity for a homogeneous half-space, although there is experimental evidence supporting their existence. Indeed, this is a drawback of the classical theory which is only circumvented by modelling the half-space as a layered structure (Love waves) or as having non-homogeneous material properties. On the contrary, the present study reveals that SH surface waves may exist in a homogeneous half-space if the problem is analyzed by a continuum theory with appropriate microstructure. This theory, which was recently introduced by Vardoulakis and co-workers, assumes a strain-energy density expression containing, besides the classical terms, volume strain-gradient and surface-energy gradient terms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Based on the relative relation of wave velocities of the half-space and the beam, four cases with the combination of different parameters of the half-space and the beam, the system of soft beam and hard half-space, the system of sub-soft beam and hard half-space, the system of sub-hard beam and soft half-space, and the system of hard beam and soft half-space are considered. The critical velocities of the moving load are studied using dispersion curves. It is found that critical velocities of the moving load on the Timoshenko beam depend on the relative relation of wave velocities of the half-space and the beam. The Rayleigh wave velocity in the half-space is always a critical velocity and the response of the system will be infinite when the load velocity reaches it. For the system of soft beam and hard half-space, wave velocities of the beam are also critical velocities. Besides the shear wave velocity of the beam, there is an additional minimum critical velocity for the system of sub-soft beam and hard half-space. While for systems of (sub-) hard beams and soft half-space, wave velocities of the beam are no longer critical ones. Comparison with the Euler-Bernoulli beam shows that the critical velocities and response of the two types of beams are much different for the system of (sub-) soft beam and hard half-space but are similar to each other for the system of (sub-) hard beam and soft half space. The largest displacement of the beam is almost at the location of the load and the displacement along the beam is almost symmetrical if the load velocity is smaller than the minimum critical velocity (the shear wave velocity of the beam for the system of soft beam and hard half-space). The largest displacement of the beam shifts behind the load and the asymmetry of the displacement along the beam increases with the increase of the load velocity due to the damping and wave radiation. The displacement of the beam at the front of the load is very small if the load velocity is larger than the largest wave velocity of the beam and the half space. The results of the present study provide attractive theoretical and practical references for the analysis of ground vibration induced by the high-speed train.  相似文献   

7.
Summary The paper presents a study of time-harmonic vibration of a half-space possessing a shear modulus linearly increasing with depth. Completing the previous paper [1], where the time-harmonic vibration of an incompressible half-space has been considered, the problem is now solved for a compressible as well as an incompressible material. The half-space is subjected to a vertical or horizontal surface load. The solution is represented in terms of Fourier-Bessel integrals containing functions of depth coordinate that are expressed through confluent hypergeometric functions. Numerical results concerning surface displacements due to a point force are given for a wide range of frequency variations and degree of non-homogeneity. The results show that, as compared to the homogeneous case, non-homogeneity can considerably increase vibration amplitudes at large distances from the applied force. Received 19 August 1996; accepted for publication 16, December 1996  相似文献   

8.
This paper investigates the possibility of shear wave propagation along the plane surface in the interface of two different types of fibre reinforced media. The upper layer is fibre reinforced and the lower half-space is taken inhomogeneous fibre reinforced. Dispersion equation and condition for maximum energy flow near the surface are obtained in compact form. The dispersion equation coincides with that of Love wave for uniform media. Effect of reinforcement and inhomogeneity on phase and group velocity has been depicted by means of graphs. It is observed that inhomogeneity and reinforcement decreases the phase velocity and presence of reinforcement deviate the group velocity.  相似文献   

9.
The present article deals with the stresses developed in an initially stressed irregular viscoelastic half-space due to a load moving with a constant velocity at a rough free surface.Expressions for normal and shear stresses are obtained in closed form. The substantial effects of influence parameters, viz., depth(from the free surface), irregularity factor, maximum depth of irregularity, viscoelastic parameter, horizontal and vertical initial stresses,and frictional coefficient, on normal and shear stresses are investigated. Moreover, comparative study is carried out for three different cases of irregularity, viz., rectangular irregularity,parabolic irregularity and no irregularity, which is manifested through graphs.  相似文献   

10.
The behavior of Rayleigh surface waves and the first mode of the Love waves in isotropic media with positive and negative Poisson’s ratio is compared. It is shown that the Rayleigh wave velocity increases with decreasing Poisson’s ratio, and it increases especially rapidly for negative Poisson’s ratios less than ?0.75. It is demonstrated that, for positive Poisson’s ratios, the vertical component of the Rayleigh wave displacements decays with depth after some initial increase, while for negative Poisson’s ratios, there is a monotone decrease. The Rayleigh waves are characterized by elliptic trajectories of the particle motion with the change of the rotation direction at critical depths and by the linear vertical polarization at these depths. It is found that the elliptic orbits are less elongated and the critical depths are greater for negative Poisson’s ratios. It is shown that the stress distribution in the Rayleighwaves varies nonmonotonically with the dimensionless depth as (positive or negative) Poisson’s ratio varies. The stresses increase strongly only as Poisson’s ratio tends to?1. It is shown that, in the case of an incompressible thin covering layer, the velocity of the first mode of the Love waves strongly increases for negative Poisson’s ratios of the half-space material. If the thickness of the incompressible layer is large, then the wave very weakly penetrates into the halfspace for any value of its Poisson’s ratio. For negative Poisson’s ratios, the Love wave in a layer and a half-space is mainly localized in the covering layer for any values of its thickness and weakly penetrates into the half-space. For the first mode of the Love waves, it was discovered that there is a strong increase in the maximum of one of the shear stresses on the interface between the covering layer and the half-space as Poisson’s ratios of both materials decrease. For the other shear stress, there is a stress jump on the interface and a more complicated dependence of the stress on Poisson’s ratio on both sides of the interface.  相似文献   

11.
The linearized theory of elasticity for prestressed bodies is used to solve a stationary plane problem for a prestressed two-layer half-space under a surface load moving with constant velocity. The half-space is assumed to be compressible and to have an arbitrary elastic potential. The Fourier transform is used to obtain the fundamental solution of the problem for different contact conditions and load velocities. A compressible material with a harmonic elastic potential is considered as an example __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 35–55, April 2008.  相似文献   

12.
The paper presents a numerical study of the propagation of plane waves in a half-space occupied by a granular material, with periodic boundary conditions for velocity or stresses prescribed at the boundary of the half-space. The constitutive behaviour of the material is described by a simplified hypoplastic equation which takes into account different values of the stiffness for different directions of deformation, and the coupling between shear and volumetric strains owing to dilatancy. These two features are responsible for a nonlinear character of longitudinal waves and for the generation of longitudinal motion by transverse disturbances. It is shown that longitudinal and transverse boundary disturbances produce qualitatively the same longitudinal waves at large distances from the boundary. As a longitudinal wave propagates, the amplitude of oscillations decreases and eventually vanishes, resulting in a single non-oscillating wave.Received: 10 September 2002, Accepted: 31 March 2003 Correspondence to: Y. A. Berezin  相似文献   

13.
This paper deals with the propagation of surface waves of an assigned wavelength on a thermoviscoelastic half-space. It is shown that a unique surface wave of an assigned wavelength, which satisfies the adopted criteria for behaviour at infinity, always exists. This wave is interpreted as a superposition of three dispersive inhomogeneous plane waves. The superposed waves have different directions of propagation and different phase velocities. Their directions of propagation are not parallel to the stress-free surface. The plane of constant amplitude that corresponds to each of these superposed waves is parallel to the stress-free surface and moves to it with a constant velocity, which is different for each of the superposed waves. The numerical computations refer to some typical values of the material and thermal constants at different values of the wavelength when the half-space is thermally insulated.  相似文献   

14.
对剪切弹性模量沿深度以指数函数变化的非均质半空间,本文用摄动法得到了Rayleigh面波的波函数解答及相速度方程。以不同金属与陶瓷复合而成的几种梯度材料为例,用数值方法求解了相速度方程,给出了相应的波的弥散曲线,结果表明,梯度介质半空间自由表面附近的Rayleigh波通常有两种不同的弥散形式,即正常弥散和非正常弥散。  相似文献   

15.
Summary Time-harmonic vibrations of an incompressible half-space having shear modulus linearly increasing with depth are studied. The half-space is subjected to a surface load which has vertical or hovizontal direction. The general solution of the time-harmonic, in the vertical direction nonhomogeneous problem is constructed for arbitrary angular distribution in the horizontal plane. Numerical results concerning surface displacements due to a point force are given for the case of nonzero shear modulus at the surface. These results show that nonhomogeneity can considerably increase amplitudes at large distances from the applied force.  相似文献   

16.
In this paper a series of problems for an isotropic elastic half-space with power-law nonhomogeneity are considered. The action of surface vertical and horizontal forces applied to the half-space is studied. A part of the paper deals with the case of zero-valued surface shear modulus (for positive values of the power determining the nonhomogeneity). This condition leads to simple solutions for two-dimensional (2D) case when radial distribution of stresses exists for surface loads concentrated along an infinite line. Corresponding results for the three-dimensional (3D) case are constructed on the basis of the relationships between 2D and 3D solutions developed in the paper. A more complicated case, in which the shear modulus at the surface of the half-space differs from zero, is treated using fundamental solutions of the differential equations for Fourier–Bessel transformations of displacements. In the paper the fundamental solutions are built in the following two forms: (a) a combination of functions expressing displacements of the half-space under the action of vertical and horizontal forces in the case of zero surface shear modulus, and (b) a representation of the fundamental solutions using confluent hypergeometric functions. The results of numerical calculation given in the paper relate to Green functions for the surface vertical and horizontal point forces.  相似文献   

17.
Thepressure-shear plate impact technique is used to study material behavior at high rates of deformation. In this technique, plastic waves of combined pressure and shear stresses are produced by impact of parallel plates skewed relative to their direction of approach. Commercially pure alpha-titanium and 6061-T6 aluminum are tested under a variety of pressure and shear tractions by using different combinations of impact velocities and angles of inclination. A laser interferometer system is used to monitor simultaneously the normal and transverse components of motion of a point at the rear surface of the target plate. The experimental results are compared with numerical solutions based on an elastic/viscoplastic model of the material. Both isotropic and kinematic strain hardening models are used in the computations. The results indicate that unlike the normal velocity profiles, the transverse velocity profiles are sensitive to the dynamic plastic response and, thus, can be used to study material behavior at high strain rates. For the materials tested the results suggest that the flow stress required for plastic straining increases markedly with increasing strain rate at strain rates above 104s?1. Hydrostatic pressure of the order that exists in the tests (up to 2 GPa) does not affect the plastic flow in 6061-T6 aluminum and appears to have at most a minor effect on the deformation of the titanium.  相似文献   

18.
The paper addresses a plane problem: a concentrated force acts on a plate resting on an elastic half-space with homogeneous prestrain. The equations of motion of the plate incorporate shear and rotary inertia. The half-space is assumed to be incompressible and isotropic in the natural state. The elastic potential is given in general form and is only specified for numerical purposes. The dependence of the critical velocity of the load and the stress-strain state on the prestresses is analyzed for different ratios between the stiffnesses of the layer and half-space and different contact conditions. The calculations are carried out for a half-space with Bartenev-Khazanovich potential __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 3, pp. 36–54, March 2008.  相似文献   

19.
The asymptotic stress and strain fields near the tip of a crack which propagates dynamically in a rate-sensitive solid are obtained under anti-plane shear and plane strain conditions. The problem is formulated within the context of a small-strain theory for a solid whose mechanical behavior under high strain rates is described by an elastic-viscoplastic constitutive relation. It is shown that, if the stresses are singular at the crack-tip, the viscoplastic relation is equivalent asymptotically to an elastic-non-linear viscous relation. Furthermore, for a certain range of the material parameter which characterizes the rate-sensitivity of the material, the elastic strain-rates near the propagating crack tip are shown to have the same asymptotic radial dependence near the propagating crack-tip as the inelastic strain-rates. This determines the order of the stress singularity uniquely. The governing equations for anti-plane shear and plane strain are then derived. The numerical results for the stress and strain fields are presented for anti-plane shear and plane strain. For the present model, the results suggest that under small-scale yielding conditions, there exists a minimum velocity for stable steady crack propagation. The implication that a terminal velocity for a running crack may exist is also discussed.  相似文献   

20.
The three-dimensional, rapid sliding indentation of a deformable half-space by a rigid indentor of a flat elliptical base is treated in this paper. The response of the material that fills the half-space is assumed to be governed by coupled thermoelasticity. The indentor translates without friction on the half-space surface at a constant sub-Rayleigh speed and the problem is treated as a steady-state one. An exact solution is obtained that is based on a Green’s function approach, integral equations, and Galin’s theorem. A closed-form expression for the distributed contact pressure under the elliptical base of the indentor is derived. Representative numerical results are given illustrating the effects of the indentor velocity, indentor geometry, and parameters of the thermoelastic solid on the contact displacement. Since there is an analogy between the steady-state theories of thermoelasticity and poroelasticity, the present results carry over to the latter case directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号