首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A stochastic integro-differential system (1) x?(t, ω) = A(ω) X(t, ω) + ∝0t B(t ? s, ω) X(s, ω) ds + b(ω) Φ(σ(t, ω)) subject to σ(t, ω) = 〈c(ω), X(t, ω)〉, t ? 0 is considered where the integrals are interpreted as Bochner integrals. Existence and absolute stability of random solutions of (1) are studied.  相似文献   

2.
In [5], Erdös and Hajnal formulate the following proposition, which we shall refer to as Φ: If ? is an order-type such that |?| = ω2but ω2, ω21 ? ?, there is ψ ? ?, |ψ| = ω1, such that ω1, ω11 ? ψ. In [2], we showed that if V = L, then ?Φ. We do not know if the assumption V = L can be weakened to CH, or if, in fact, Φ is consistent with CH. However, in this note we show that, relative to a certain large cardinal assumption, Φ is consistent with 2ω = ω2, so that ?Φ is not provable in ZFC alone. Our proof has an interesting model-theoretic consequence, which we mention at the end.  相似文献   

3.
In this paper we are constructing a recurrence relation of the form
i=0rωi(k)mk+i{λ} [f] = ω(k)
for integrals (called modified moments)
mk{λ}[f]df=?11 f(x)Ck(λ)(x)dx (k = 0,1,…)
in which Ck(λ) is the k-th Gegenbauer polynomial of order λ(λ > ?12), and f is a function satisfying the differential equation
i=0n Pi(x)f(i)(x) = p(x) (?1?x?1)
of order n, where p0, p1, …, pn ? 0 are polynomials, and mkλ[p] is known for every k. We give three methods of construction of such a recurrence relation. The first of them (called Method I) is optimum in a certain sense.  相似文献   

4.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

5.
Sufficient conditions are given for the L2-stability of a class of feedback systems consisting of a linear operator G and a nonlinear gain function, either odd monotone or restricted by a power-law, in cascade, in a negative feedback loop. The criterion takes the form of a frequency-domain inequality, Re[1 + Z()] G() ? δ > 0 ?ω? (?∞, +∞), where Z() is given by, Z() = β[Y1() + Y2()] + (1 ? β)[Y3() ? Y3(?)], with 0 ? β ? 1 and the functions y1(·), y2(·) and y3(·) satisfying the time-domain inequalities, ?∞+∞¦y1(t) + y2(t)¦ dt ? 1 ? ?, y1(·) = 0, t < 0, y2(·) = 0, t > 0 and ? > 0, and 0¦y3(t)¦ dt < 12c2, c2 being a constant depending on the order of the power-law restricting the nonlinear function. The criterion is derived using Zames' passive operator theory and is shown to be more general than the existing criteria.  相似文献   

6.
The perturbed central force problem γxx ? ?2γa?2 + γλ(γ) = 0, γa?x + 2a?γx + γ[\?gw(γ1) ? \?gw(γ)] = 0 arising from the λ-ω system
ααtC1C2=λωλC1C2+ααtC1C2
where c1 = γ(x)cosθ(x,t), c2 = γ(x)sinθ(x,t), θ = σt ? ?∝xa?(x′)dx′ and ω = ?\?gw(γ) is considered for the class λ = \?gw = 1 ? g(γ). The resulting linear equation in γ(x), γxx + 2a?γx + γ[α2 + a?x ? ?2a?2] = 0 is solved with the aid of a class of trial phase functions a?T(x) generated by the unperturbed central force problem for the case g(γ) = γ2. An application of the Liouville-Green approximation procedure reduces the system to a Schrödinger type boundary value problem in an eigen sub-domain. The analytical estimates for α are in reasonable agreement with the results of numerical integration of the nonlinear system. The eigenfunctions γ(x) display expected oscillatory behaviour inside an eigen sub-domain. The higher modes and the span of the most extended centre structure are estimated and interpreted in the context of WKBJ connection formula.  相似文献   

7.
It is shown that the method of Chernoff developed in the preceding paper can be modified to prove the essential self-adjointness on C0(Rm) of all positive powers of the Schrödinger operator T = ? Δ + q if q real and in C(Rm) and if T ? ?a ? b ¦ x ¦2on C0(Rm).  相似文献   

8.
In this paper iterative schemes for approximating a solution to a rectangular but consistent linear system Ax = b are studied. Let A?Cm × nr. The splitting A = M ? N is called subproper if R(A) ? R(M) and R(A1) ?R(M1). Consider the iteration xi = M2Nxi?1 + M2b. We characterize the convergence of this scheme to a solution of the linear system. When A?Rm×nr, monotonicity and the concept of subproper regular splitting are used to determine a necessary and a sufficient condition for the scheme to converge to a solution.  相似文献   

9.
The eigenfunctions of the one dimensional Schrödinger equation Ψ″ + [E ? V(x)]Ψ=0, where V(x) is a polynomial, are represented by expansions of the form k=0ck?k(ω, x). The functions ?k (ω, x) are chosen in such a way that recurrence relations hold for the coefficients ck: examples treated are Dk(ωx) (Weber-Hermite functions), exp (?ωx2)xk, exp (?cxq)Dk(ωx). From these recurrence relations, one considers an infinite bandmatrix whose finite square sections permit to solve approximately the original eigenproblem. It is then shown how a good choice of the parameter ω may reduce dramatically the complexity of the computations, by a theoretical study of the relation holding between the error on an eigenvalue, the order of the matrix, and the value of ω. The paper contains tables with 10 significant figures of the 30 first eigenvalues corresponding to V(x) = x2m, m = 2(1)7, and the 6 first eigenvalues corresponding to V(x) = x2 + λx10 and x2 + λx12, λ = .01(.01).1(.1)1(1)10(10)100.  相似文献   

10.
Let π = (a1, a2, …, an), ? = (b1, b2, …, bn) be two permutations of Zn = {1, 2, …, n}. A rise of π is pair ai, ai+1 with ai < ai+1; a fall is a pair ai, ai+1 with ai > ai+1. Thus, for i = 1, 2, …, n ? 1, the two pairs ai, ai+1; bi, bi+1 are either both rises, both falls, the first a rise and the second a fall or the first a fall and the second a rise. These possibilities are denoted by RR, FF, RF, FR. The paper is concerned with the enumeration of pairs π, p with a given number of RR, FF, RF, FR. In particular if ωn denotes the number of pairs with RR forbidden, it is proved that 0ωnznn!n! = 1?(z), ?(z) = ∑0(-1) nznn!n!. More precisely if ω(n, k) denotes the number of pairs π, p with exactly k occurences of RR(or FF, RF, FR) then 1 + ∑n=1znn!n!n?1k=0 ω(n, k)xk = (1 ? x)(?(z(1 ? x)) ? x).  相似文献   

11.
Let Ωm be the set of partitions, ω, of a finite m-element set; induce a uniform probability distribution on Ωm, and define Xms(ω) as the number of s-element subsets in ω. We alow the existence of an integer-valued function n=n(m)(t), t?[0, 1], and centering constants bms, 0?s? m, such that
Z(m)(t)=s=0n(m)(t)(Xms?bms)s=0mbms
converges to the ‘Brownian Bridge’ process in terms of its finite-dimensional distributions.  相似文献   

12.
The message m = {m(t)} is a Gaussian process that is to be transmitted through the white Gaussian channel with feedback: Y(t) = ∫0tF(s, Y0s, m)ds + W(t). Under the average power constraint, E[F2(s, Y0s, m)] ≤ P0, we construct causally the optimal coding, in the sense that the mutual information It(m, Y) between the message m and the channel output Y (up to t) is maximized. The optimal coding is presented by Y(t) = ∫0t A(s)[m(s) ? m?(s)] ds + W(t), where m?(s) = E[m(s) ¦ Y(u), 0 ≤ u ≤ s] and A(s) is a positive function such that A2(s) E |m(s) ? m?(s)|2 = P0.  相似文献   

13.
Let G be a semisimple noncompact Lie group with finite center and let K be a maximal compact subgroup. Then W. H. Barker has shown that if T is a positive definite distribution on G, then T extends to Harish-Chandra's Schwartz space C1(G). We show that the corresponding property is no longer true for the space of double cosets K\GK. If G is of real-rank 1, we construct liner functionals Tp ? (Cc(K\GK))′ for each p, 0 < p ? 2, such that Tp(f 1 f1) ? 0, ?f ? Cc(K\GK) but Tp does not extend to a continuous functional on Cp(K\GK). In particular, if p ? 1, Tv does not extend to a continuous functional on C1(K\GK). We use this to answer a question (in the negative) raised by Barker whether for a K-bi-invariant distribution T on G to be positive definite it is enough to verify that T(f 1 f1) ? 0, ?f ? Cc(K\GK). The main tool used is a theorem of Trombi-Varadarajan.  相似文献   

14.
We study degeneration for ? → + 0 of the two-point boundary value problems
τ?±u := ?((au′)′ + bu′ + cu) ± xu′ ? κu = h, u(±1) = A ± B
, and convergence of the operators T?+ and T?? on L2(?1, 1) connected with them, T?±u := τ?±u for all
u?D(T?±, D(T?±) := {u ? L2(?1, 1) ∣ u″ ? L2(?1, 1) &; u(?1) = u(1) = O}, T0+u: = xu′
for all
u?D(TO+), D(TO+) := {u ? L2(?1, 1) ∣ xu′ ? L2(?1, 1) &; u(?1) = u(1) = O}
. Here ? is a small positive parameter, λ a complex “spectral” parameter; a, b and c are real b-functions, a(x) ? γ > 0 for all x? [?1, 1] and h is a sufficiently smooth complex function. We prove that the limits of the eigenvalues of T?+ and of T?? are the negative and nonpositive integers respectively by comparison of the general case to the special case in which a  1 and bc  0 and in which we can compute the limits exactly. We show that (T?+ ? λ)?1 converges for ? → +0 strongly to (T0+ ? λ)?1 if R e λ > ? 12. In an analogous way, we define the operator T?+, n (n ? N in the Sobolev space H0?n(? 1, 1) as a restriction of τ?+ and prove strong convergence of (T+?,n ? λ)?1 for ? → +0 in this space of distributions if R e λ > ?n ? 12. With aid of the maximum principle we infer from this that, if h?C1, the solution of τ?+u ? λu = h, u(±1) = A ± B converges for ? → +0 uniformly on [?1, ? ?] ∪ [?, 1] to the solution of xu′ ? λu = h, u(±1) = A ± B for each p > 0 and for each λ ? C if ? ?N.Finally we prove by duality that the solution of τ??u ? λu = h converges to a definite solution of the reduced equation uniformly on each compact subset of (?1, 0) ∪ (0, 1) if h is sufficiently smooth and if 1 ? ?N.  相似文献   

15.
Let x?Sn, the symmetric group on n symbols. Let θ? Aut(Sn) and let the automorphim order of x with respect to θ be defined by
γθ(x)=min{k:x xθ xθ2 ? xθk?1=1}
where is the image of x under θ. Let αg? Aut(Sn) denote conjugation by the element g?Sn. Let b(g; s, k : n) ≡ ∥{x ? Sn : kγαg(x)sk}∥ where s and k are positive integers and ab denotes a divides b. Further h(s, k : n) ≡ b(1; s, k : n), where 1 denotes the identity automorphim. If g?Sn let c = f(g, s) denote the number of symbols in g which are in cycles of length not dividing the integer s, and let gs denote the product of all cycles in g whose lengths do not divide s. Then gs moves c symbols. The main results proved are: (1) recursion: if n ? c + 1 and t = n ? c ? 1 then b(g; s, 1:n)=∑is b(g; s, 1:n?1)(ti?1(i?1)! (2) reduction: b(g; s, 1 : c)h(s, 1 : i) = b(g; s, 1 : i + c); (3) distribution: let D(θ, n) ≡ {(k, b) : k?Z+ and b = b(θ; 1, k : n) ≠ 0}; then D(θ, m) = D(φ, m) ∨ m ? N = N(θ, φ) iff θ is conjugate to φ; (4) evaluation: the number of cycles in gss of any given length is smaller than the smallest prime dividing s iff b(gs; s, 1 : c) = 1. If g = (12 … pm)t and skpm then b(g;s,k:pm) {0±1(mod p).  相似文献   

16.
For a given pair (A,b)∈Rn×n×Rn×1 such that A is cyclic and b is a cyclic generator (with respect to A) of Rn×1, it is shown that for every nonnegative integer m we can find a nonnegative integer t and a sequence {fj}tj=0,fjR1×n,so that a the zeros of the rational function det P(z), where P(z) = zI ? A ? ∑tj=0z-(m+j)b?f, lie in the open unit disc in the complex plane. The result is directly applicable to a stabilizability problem for linear systems with a time delay in control action.  相似文献   

17.
Given a set S of positive integers let ZkS(t) denote the number of k-tuples 〈m1, …, mk〉 for which mi ∈ S ? [1, t] and (m1, …, mk) = 1. Also let PkS(n) denote the probability that k integers, chosen at random from S ? [1, n], are relatively prime. It is shown that if P = {p1, …, pr} is a finite set of primes and S = {m : (m, p1pr) = 1}, then ZkS(t) = (td(S))k Πν?P(1 ? 1pk) + O(tk?1) if k ≥ 3 and Z2S(t) = (td(S))2 Πp?P(1 ? 1p2) + O(t log t) where d(S) denotes the natural density of S. From this result it follows immediately that PkS(n) → Πp?P(1 ? 1pk) = (ζ(k))?1 Πp∈P(1 ? 1pk)?1 as n → ∞. This result generalizes an earlier result of the author's where P = ? and S is then the whole set of positive integers. It is also shown that if S = {p1x1prxr : xi = 0, 1, 2,…}, then PkS(n) → 0 as n → ∞.  相似文献   

18.
We shall establish for all finite fields GF(pn) the following result of Chowla: given a positive integer m greater than one and the finite field GF(p), p a prime, such that xm = ?1 is solvable in GF(p), then there exists an absolute positive constant c, c ≤ 10ln 2, such that for each set of s nonzero elements ai of GF(p), a1x1m + ? + asxsm has a non-trivial zero in GF(p) if sc ln m.  相似文献   

19.
A family of J of open subsets of the real line is called an ω-cover of a set X iff every finite subset of X is contained in an element of J. A set of reals X is a γ-set iff for every ω-cover J of X there exists 〈Dn: n < ω〉? Jω such that
X?nm > n Dm.
In this paper we show that assuming Martin's axiom there is a γ-set X of cardinality the continuum.  相似文献   

20.
The operator L?(t, λ) = e?iλ(t, λ) ? 2e?iλtT?(s, x) e(s, t) dvs(x) dm(s) acting on H=∝02πL2(vt), where m and vt, 0 ? t ? 2π are measures on [0, 2π] with m smooth and e(s, t) = exp[?∝tsTdvλ(θ) dm(λ)], satisfies rank(I ? LL1) = rank(I ? L1L) = 1. It is, therefore, unitarily equivalent to a scalar Sz.-Nagy-Foia? canonical model. The purpose of this paper is to determine the model explicitly and to give a formula for the unitary equivalence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号