首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On simultaneous approximation by lagrange interpolating polynomials   总被引:1,自引:0,他引:1  
This paper considers to replace △_m(x)=(1-x~2)~2(1/2)/n +1/n~2 in the following result for simultaneousLagrange interpolating approximation with (1-x~2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then|f~(k)(x)-P_~(k)(f,x)|=O(1)△_(n)~(a-k)(x)ω(f~(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q,where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_nU Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.  相似文献   

2.
3.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

4.
Galkina  S. Yu. 《Mathematical Notes》2001,70(5-6):733-743
In this paper, we study the behavior of the Fourier--Haar coefficients $a_{m_1 , \ldots ,m_n } \left( f \right)$ of functions $f$ Lebesgue integrable on the $n$ -dimensional cube $D_n = \left[ {0,1} \right]^n $ and having a bounded Vitali variation $V_{D_n } f$ on it. It is proved that $$\sum\limits_{m_1 = 2}^\infty \cdots \sum\limits_{m_n = 2}^\infty {\left| {a_{m_1 , \ldots ,m_n } \left( f \right)} \right|} \leqslant \left( {\frac{{2 + \sqrt 2 }}{3}} \right)^n {\text{ }}.{\text{ }}V_{D_n } f$$ and shown that this estimate holds for some function of bounded finite nonzero Vitali variation.  相似文献   

5.
Let and be polynomials orthogonal on the unit circle with respect to the measures dσ and dμ, respectively. In this paper we consider the question how the orthogonality measures dσ and dμ are related to each other if the orthogonal polynomials are connected by a relation of the form , for , where . It turns out that the two measures are related by if , where and are known trigonometric polynomials of fixed degree and where the 's are the zeros of on . If the 's and 's are uniformly bounded then (under some additional conditions) much more can be said. Indeed, in this case the measures dσ and dμ have to be of the form and , respectively, where are nonnegative trigonometric polynomials. Finally, the question is considered to which weight functions polynomials of the form where denotes the reciprocal polynomial of , can be orthogonal. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
LetL(x) denote the number of square-full integers not exceedingx. It is well-known that $$L\left( x \right) \sim \frac{{\zeta \left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\zeta \left( 3 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta \left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)}}{{\zeta \left( 2 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ whereζ(s) denotes the Riemann Zeta function, LetΔ(x) denote the error function in the asymptotic formula forL(x). On the assumption of the Riemann hypothesis (R.H.), it is known that $$\Delta x = O\left( {x^{13/81 + 8} } \right)$$ for everyε > 0. In this paper, we prove on the assumption of R.H. that $$\frac{1}{x}\int\limits_x^1 {\left| {\Delta \left( t \right)} \right|dt = O\left( {x^{1/10 + ^8 } } \right)} .$$ In fact, we prove a more general result. We conjecture that $$\Delta x = O\left( {x^{1/10 + ^8 } } \right)$$ under the assumption of the R.H.  相似文献   

7.
Let $I^d $ be the d‐dimensional cube, $I^d = [0,1]^d $ , and let $F \ni f \mapsto Sf \in L_\infty (I^d ) $ be a linear operator acting on the Sobolev space F, where Fis either $$$$ or $$$$ where $$\left\| f \right\|_F = \sum\limits_{\left| m \right| = r} {\mathop {{\text{esssup}}}\limits_{x \in I^d } \left| {\frac{{\partial f^{\left| m \right|} }} {{\partial x_1^{m_1 } \partial x_2^{m_2 } \cdot \cdot \cdot \partial x_d^{m_d } }}(x)} \right|.} $$ We assume that the problem elements fsatisfy the condition $\sum\nolimits_{\left| m \right| = r} {{\text{esssup}}} _{x \in I^d } \left| {f^{(m)} (x)} \right| \leqslant 1 $ and that Sis continuous with respect to the supremum norm. We study sensitivity of optimal recovery of Sfrom inexact samples of ftaken at npoints forming a uniform grid on $I^d $ . We assume that the inaccuracy in reading the sample vector is measured in the pth norm and bounded by a nonnegative number δ. The sensitivity is defined by the difference between the optimal errors corresponding to the exact and perturbed readings, respectively. Our main result is that this difference is bounded by $\mathcal{A}\delta $ , where $\mathcal{A} $ is a positive constant independent of the number of samples. This indicates that the curse of dimension, which badly affects the optimal errors, does not extend to sensitivity.  相似文献   

8.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

9.
LetK be a quadratic number field with discriminantD and denote byF(n) the number of integral ideals with norm equal ton. Forr≥1 the following formula is proved $$\sum\limits_{n \leqslant x} {F(n)F(n + r) = M_K (r)x + E_K (x,r).} $$ HereM k (r) is an explicitly determined function ofr which depends onK, and for every ε>0 the error term is bounded by \(|E_K (x,r)|<< |D|^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2} + \varepsilon } x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6} + \varepsilon } \) uniformly for \(r<< |D|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6}} \) Moreover,E k (x,r) is small on average, i.e \(\int_X^{2X} {|E_K (x,r)|^2 dx}<< |D|^{4 + \varepsilon } X^{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2} + \varepsilon } \) uniformly for \(r<< |D|X^{{3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-0em} 4}} \) .  相似文献   

10.
In this paper we study integral operators of the form $$T\,f\left( x \right) = \int {k_1 \left( {x - a_1 y} \right)k_2 \left( {x - a_2 y} \right)...k_m \left( {x - a_m y} \right)f\left( y \right)dy} ,$$ $$k_i \left( y \right) = \sum\limits_{j \in Z} {2^{\frac{{jn}}{{q_i }}} } \varphi _{i,j} \left( {2^j y} \right),\,1 \leqq q_i < \infty ,\frac{1}{{q_1 }} + \frac{1}{{q_2 }} + ... + \frac{1}{{q_m }} = 1 - r,$$ $0 \leqq r < 1$ , and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T:L^p \left( {R^n } \right) \to T:L^q \left( {R^n } \right)$ for $1 < p < \frac{1}{r}$ and $\frac{1}{q} = \frac{1}{p} - r$ .  相似文献   

11.
Rudykh  G. A.  Semenov  É. I. 《Mathematical Notes》2001,70(5-6):714-719
In this paper, we obtain new exact non-self-similar solutions of the nonlinear diffusion equation $$\begin{gathered} {\text{ }}u_t = \Delta \ln u, \hfill \\ u \triangleq u\left( {x,t} \right):\Omega \times \mathbb{R}^ + \to \mathbb{R},{\text{ }} x \in \mathbb{R}^n , \hfill \\ \end{gathered} $$ where $\Omega \subset \mathbb{R}^n $ is the domain and $\mathbb{R}^ + = \left\{ {t:0 \leqslant t < + \infty } \right\},{\text{ }}u\left( {x,t} \right) \geqslant 0$ is the temperature of the medium.  相似文献   

12.
Let $A^{(l)} (l = 1, \ldots ,k)$ be $n \times n$ nonnegative matrices with right and left Perron vectors $u^{(l)} $ and $v^{(l)} $ , respectively, and let $D^{(l)} $ and $E^{(l)} (l = 1, \ldots ,k)$ be positive-definite diagonal matrices of the same order. Extending known results, under the assumption that $$u^{(1)} \circ v^{(1)} = \ldots = u^{(k)} \circ v^{(k)} \ne 0$$ (where `` $ \circ $ '' denotes the componentwise, i.e., the Hadamard product of vectors) but without requiring that the matrices $A^{(l)} $ be irreducible, for the Perron root of the sum $\sum\nolimits_{l = 1}^k {D^{(l)} A^{(l)} E^{(l)} } $ we derive a lower bound of the form $$\rho \left( {\sum\limits_{l = 1}^k {D^{(l)} A^{(l)} E^{(l)} } } \right) \geqslant \sum\limits_{l = 1}^k {\beta _{l\rho } (A^{(l)} ),{\text{ }}\beta _l >0.} $$ Also we prove that, for arbitrary irreducible nonnegative matrices $A^{{\text{ (}}l{\text{)}}} (l = 1, \ldots ,k),$ , $$\rho \left( {\sum\limits_{l = 1}^k {A^{(l)} } } \right) \geqslant \sum\limits_{l = 1}^k {\alpha _{l\rho } (A^{(l)} ),} $$ where the coefficients ∝1>0 are specified using an arbitrarily chosen normalized positive vector. The cases of equality in both estimates are analyzed, and some other related results are established. Bibliography: 8 titles.  相似文献   

13.
We show that there do not exist computable functions f 1(e, i), f 2(e, i), g 1(e, i), g 2(e, i) such that for all e, iω, (1) $ {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)} \leqslant _{{\rm T}} {\left( {W_{e} - W_{i} } \right)}; $ (2) $ {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)} \leqslant _{{\rm T}} {\left( {W_{e} - W_{i} } \right)}; $ (3) $ {\left( {W_{e} - W_{i} } \right)} \not\leqslant _{{\rm T}} {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)} \oplus {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)}; $ (4) $ {\left( {W_{e} - W_{i} } \right)} \not\leqslant _{{\rm T}} {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)}{\text{unless}}{\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\emptyset};{\text{and}} $ (5) $ {\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)}{\text{unless}}{\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\emptyset}. $ It follows that the splitting theorems of Sacks and Cooper cannot be combined uniformly.  相似文献   

14.
Let X and Y be linear normed spaces, W a set in X, A an operator from W into Y, and \(\mathfrak{W}\) the set of all operators or the set ? of linear operators from X into Y. With δ>0 we put $$v\left( {\delta ,\mathfrak{M}} \right) = \mathop {\inf }\limits_{T \in \mathfrak{M}} \mathop {\sup }\limits_{x \in W} \mathop {\sup }\limits_{\left\| {\eta - x} \right\|_X \leqslant \delta } \left\| {Ax - T\eta } \right\|_Y $$ . We discuss the connection of \(v\left( {\delta , \mathfrak{M}} \right)\) with the Stechkin problem on best approximation of the operator A in W by linear bounded operators. Estimates are obtained for \(v\left( {\delta , \mathfrak{M}} \right)\) e.g., we write the inequality , where H(Y) is Jung's constant of the space Y, and Ω(t) is the modulus of continuity of A in W.  相似文献   

15.
Gordon  Yehoram  Junge  Marius 《Positivity》1997,1(1):7-43
We extend classical volume formulas for ellipsoids and zonoids to p-sums of segments $${vol}\left( {\sum\limits_{i=1}^m { \oplus_p } [ -x_i ,x_i ]} \right)^{1/n} \sim_{c_p} n^{ - \frac{1}{{p'}}} \left( {\sum\limits_{card(I) = n} {|\det (x_i)_i |^p}} \right)^{\frac{1}{{pn}}}$$ where x1,...,xm are m vectors in $\mathbb{R}^n ,\frac{1}{p} + \frac{1}{{p\prime }} = 1$ . According to the definition of Firey, the Minkowski p-sum of segments is given by $$\sum\limits_{i = 1}^m { \oplus _p [ - x_{i,} x_i ]} = \left\{ {\sum\limits_{i = 1}^m {\alpha _i } x_i \left| {\left( {\sum\limits_{i = 1}^m {|\alpha _i |^{p^\prime } } } \right)} \right.^{\frac{1}{{p^\prime }}} \leqslant 1} \right\}.$$ We describe related geometric properties of the Lewis maps associated to classical operator norms.  相似文献   

16.
17.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

18.
19.
Kayumov  I. R. 《Mathematical Notes》2004,76(3-4):472-477
In this paper, the following sharp estimate is proved: $$\int_{0}^{2{\pi }} {\left| {F\prime \left( {e^{i\theta } } \right)} \right|^p d\theta \leqslant \sqrt {\pi } 2^{1 + p} \frac{{\gamma \left( {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}} {{\gamma \left( {1 + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}} ,\quad p > - 1,$$ where F is the conformal mapping of the domain $D^ - = \left\{ {\zeta :\left| \zeta \right| > 1} \right\}$ onto the exterior of a convex curve, with $F\prime \left( \infty \right) = 1$ . For p=1, this result is due to Pólya and Shiffer. We also obtain several generalizations of this estimate under other geometric assumptions about the structure of the domain F(D -).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号