首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The azide complexes of heme oxygenase from Pseudomonas aeruginosa (pa-HO) and Neisseriae meningitidis (nm-HO) have been studied with the aid of (1)H and (13)C NMR spectroscopy. These complexes have been shown to exist as an equilibrium mixture of two populations, one exhibiting an S = (1)/(2), (d(xy))(2)(d(xz), d(yz))(3) electron configuration and planar heme and a second with a novel S = (3)/(2), (d(xz), d(yz))(3)(d(xy))(1)(d(z)(2))(1) spin state and nonplanar heme. At physiologically relevant temperatures, the equilibrium shifts in the direction of the population exhibiting the latter electron configuration and nonplanar heme, whereas at temperatures approaching the freezing point of water, the equilibrium shifts in the direction of the population with the former electronic structure and planar heme. These findings indicate that the microenvironment of the distal pocket in heme oxygenase is unique among heme-containing proteins in that it lowers the sigma-donating (field strength) ability of the distal ligand and, therefore, promotes the attainment of heme electronic structures thus far only observed in heme oxygenase. When the field strength of the distal ligand is slightly lower than that of azide, such as OH(-) (J. Am. Chem. Soc. 2003, 125, 11842), the corresponding complex exists as a mixture of populations with nonplanar hemes and electronic structures that place significant spin density at the meso positions. The ease with which these unusual heme electronic structures are attained by heme oxygenase is likely related to activation of meso carbon reactivity which, in turn, facilitates hydroxylation of a meso carbon by the obligatory ferric hydroperoxide intermediate.  相似文献   

2.
The NMR and EPR spectra of a series of pyridine complexes [(OEC)Fe(L)2]+ (L = 4-Me2NPy, Py, and 4-CNPy) have been investigated. The EPR spectra at 4.2 K suggest that, with a decrease of the donor strength of the axial ligands, the complexes change their ground state from (d(xy))2 (d(xz)d(yz))3 to (d(xz)d(yz))4 (d(xy))1. The NMR data from 303 to 183 K show that at any temperature within this range the chemical shifts of pyrrole-8,17-CH2 protons increase with a decrease in the donor strength of the axial ligands. The full peak assignments of the [(OEC)Fe(L)2]+ complexes of this study have been made from COSY and NOE difference experiments. The pyrrole-8,17-CH2 and pyrroline protons show large chemical shifts (hence indicating large pi spin density on the adjacent carbons which are part of the pi system), while pyrrole-12,13-CH2 and -7,18-CH2 protons show much smaller chemical shifts, as predicted by the spin densities obtained from molecular orbital calculations, both Hückel and DFT; the DFT calculations additionally show close energy spacing of the highest five filled orbitals (of the Fe(II) complex) and strong mixing of metal and chlorin character in these orbitals that is sensitive to the donor strength of the axial substituents. The pattern of chemical shifts of the pyrrole-CH2 protons of [(OEC)Fe(t-BuNC)2]+ looks somewhat like that of [(OEC)Fe(4-Me2NPy)2]+, while the chemical shifts of the meso-protons are qualitatively similar to those of [(OEP)Fe(t-BuNC)2]+. The temperature dependence of the chemical shifts of [(OEC)Fe(t-BuNC)2]+ shows that it has a mixed (d(xz)d(yz))4 (d(xy))1 and (d(xy))2 (d(xz),d(yz))3 electron configuration that cannot be resolved by temperature-dependent fitting of the proton chemical shifts, with a S = 5/2 excited state that lies somewhat more than 2kT at room temperature above the ground state; the observed pattern of chemical shifts is the approximate average of those expected for the two S = 1/2 electronic configurations, which involve the a-symmetry SOMO of a planar chlorin ring with the unpaired electron predominantly in the d(yz) orbital and the b-symmetry SOMO of a ruffled chlorin ring with the unpaired electron predominantly in the d(xy) orbital. A rapid interconversion between the two, with calculated vibrational frequency of 22 cm(-1), explains the observed pattern of chemical shifts, while a favoring of the ruffled conformation explains the negative chemical shift (and thus the negative spin density at the alpha-pyrroline ring carbons), of the pyrroline-H of [TPCFe(t-BuNC)2]CF3SO3 (Simonneaux, G.; Kobeissi, M. J. Chem. Soc., Dalton Trans. 2001, 1587-1592). Peak assignments for high-spin (OEC)FeCl have been made by saturation transfer techniques that depend on chemical exchange between this complex and its bis-4-Me2NPy adduct. The contact shifts of the pyrrole-CH2 and meso protons of the high-spin complex depend on both sigma and pi spin delocalization due to contributions from three of the occupied frontier orbitals of the chlorin ring.  相似文献   

3.
The spin states of the iron(III) complexes with a highly ruffled porphyrin ring, [Fe(TEtPrP)X] where X = F-, Cl-, Br-, I-, and ClO4(-), have been examined by 1H NMR, 13C NMR, EPR, and M?ssbauer spectroscopy. While the F-, Cl-, and Br- complexes adopt a high-spin (S = 5/2) state, the I- complex exhibits an admixed intermediate-spin (S = 5/2, 3/2) state in CD2Cl2 solution. The I- complex shows, however, a quite pure high-spin state in toluene solution as well as in the solid. The results contrast those of highly saddled [Fe(OETPP)X] where the I- complex exhibits an essentially pure intermediate-spin state both in solution and in the solid. In contrast to the halide-ligated complexes, the ClO4(-) complex shows a quite pure intermediate-spin state. The 13C NMR spectra of [Fe(TEtPrP)ClO4] are characterized by the downfield and upfield shifts of the meso and pyrrole-alpha carbon signals, respectively: delta(meso) = +342 and delta(alpha-py) = -287 ppm at 298 K. The data indicate that the meso carbon atoms of [Fe(TEtPrP)ClO4] have considerable amounts of positive spin, which in turn indicate that the iron has an unpaired electron in the d(xy) orbital; the unpaired electron in the d(xy) orbital is delocalized to the meso positions due to the iron(d(xy))-porphyrin(a(2u)) interaction. Similar results have been obtained in analogous [Fe(TiPrP)X] though the intermediate-spin character of [Fe(TiPrP)X] is much larger than that of the corresponding [Fe(TEtPrP)X]. On the basis of these results, we have concluded that the highly ruffled intermediate-spin complexes such as [Fe(TEtPrP)ClO4] and [Fe(TiPrP)ClO4] adopt a novel (d(xz), d(yz))3(d(xy))1(d(z)(2)1 electron configuration; the electron configuration of the intermediate-spin complexes reported previously is believed to be (d(xy))2(d(xz)), d(yz))2(d(z)(2))1.  相似文献   

4.
A series of bis-axially ligated complexes of iron(III) tetramesitylporphyrin, TMPFe(III), tetra-(2,6-dibromophenyl)porphyrin, (2,6-Br2)4TPPFe(III), tetra-(2,6-dichlorophenyl)porphyrin, (2,6-Cl2)4TPPFe(III), tetra-(2,6-difluorophenyl)porphyrin, (2,6-F2)4TPPFe(III), and tetra-(2,6-dimethoxyphenyl)porphyrin, (2,6-(OMe)2)4TPPFe(III), where the axial ligands are 1-methylimidazole, 2-methylimidazole, and a series of nine substituted pyridines ranging in basicity from 4-(dimethylamino)pyridine (pK(a)(PyH(+)) = 9.70) to 3- and 4-cyanopyridine (pKa(PyH+) = 1.45 and 1.1, respectively), have been prepared and characterized by EPR and 1H NMR spectroscopy. The EPR spectra, recorded at 4.2 K, show "large g(max)", rhombic, or axial signals, depending on the iron porphyrinate and axial ligand, with the g(max) value decreasing as the basicity of the pyridine decreases, thus indicating a change in electron configuration from (d(xy))2(d(xz),d(yz)3 to (d(xz),d(yz))4(d(xy))1 through each series at this low temperature. Over the temperature range of the NMR investigations (183-313 K), most of the high-basicity pyridine complexes of all five iron(III) porphyrinates exhibit simple Curie temperature dependence of their pyrrole-H paramagnetic shifts and beta-pyrrole spin densities, rho(C) approximately 0.015-0.017, that are indicative of the S = 1/2 (d(xy))(2)(d(xz),d(yz))(3) electron configuration, while the temperature dependences of the pyrrole-H resonances of the lower-basicity pyridine complexes (pK(a)(PyH(+)) < 6.00) show significant deviations from simple Curie behavior which could be fit to an expanded version of the Curie law using a temperature-dependent fitting program developed in this laboratory that includes consideration of a thermally accessible excited state. In most cases, the ground state of the lower-basicity pyridine complexes is an S = 1/2 state with a mixed (d(xy))2(d(xz),d(yz))3/(d(xz),d(yz))4(d(xy))1 electron configuration, indicating that these two are so close in energy that they cannot be separated by analysis of the NMR shifts; however, for the TMPFe(III) complexes with 3- and 4-CNPy, the ground states were found to be fairly pure (d(xz),d(yz))4(d(xy))1 electron configurations. In all but one case of the intermediate- to low-basicity pyridine complexes of the five iron(III) porphyrinates, the excited state is found to be S = 3/2, with a (d(xz),d(yz))3(d(xy))1(d(z)2)1 electron configuration, lying some 120-680 cm(-1) higher in energy, depending on the particular porphyrinate and axial ligand. Full analysis of the paramagnetic shifts to allow separation of the contact and pseudocontact contributions could be achieved only for the [TMPFe(L)2]+ series of complexes.  相似文献   

5.
There are two types of electron configurations, (d(xy))(2)(d(xz), d(yz))(3) and (d(xz), d(yz))(4)(d(xy))(1), in low-spin iron(III) porphyrin complexes. To reveal the solvent effects on the ground-state electron configurations, we have examined the (13)C- and (1)H-NMR spectra of low-spin dicyano[meso-tetrakis(2,4,6-triethylphenyl)porphyrinato]ferrate(III) in a variety of solvents, including protic, dipolar aprotic, and nonpolar solvents. On the basis of the NMR study, we have reached the following conclusions: (i) the complex adopts the ground state with the (d(xz), d(yz))(4)(d(xy))(1) electron configuration, the (d(xz), d(yz))(4)(d(xy)())(1) ground state, in methanol, because the d(pi) orbitals are stabilized due to the O-H...N hydrogen bonding between the coordinated cyanide and methanol; (ii) the complex also exhibits the (d(xz), d(yz))(4)(d(xy))(1) ground state in nonpolar solvents, such as chloroform and dichloromethane, which is ascribed to the stabilization of the d(pi) orbitals due to the C-H...N weak hydrogen bonding between the coordinated cyanide and the solvent molecules; (iii) the complex favors the (d(xz), d(yz))(4)(d(xy))(1) ground state in dipolar aprotic solvents, such as DMF, DMSO, and acetone, though the (d(xz), d(yz))(4)(d(xy))(1) character is less than that in chloroform and dichloromethane; (iv) the complex adopts the (d(xy))(2)(d(xz), d(yz))(3) ground state in nonpolar solvents, such as toluene, benzene, and tetrachloromethane, because of the lack of hydrogen bonding in these solvents; (v) acetonitrile behaves like nonpolar solvents, such as toluene, benzene, and tetrachloromethane, though it is classified as a dipolar aprotic solvent. Although the NMR results have been interpreted in terms of the solvent effects on the ordering of the d(xy) and d(pi) orbitals, they could also be interpreted in terms of the solvent effects on the population ratios of two isomers with different electron configurations. In fact, we have observed the unprecedented EPR spectra at 4.2 K which contain both the axial- and large g(max)-type signals in some solvents such as benzene, toluene, and acetonitrile. The observation of the two types of signals has been ascribed to the slow interconversion on the EPR time scale at 4.2 K between the ruffled complex with the (d(xz), d(yz))(4)(d(xy))(1) ground state and, possibly, the planar (or nearly planar) complex with the (d(xy))(2)(d(xz), d(yz))(3) ground state.  相似文献   

6.
A series of low-spin, six-coordinate complexes [Fe(TBzTArP)L(2)]X (1) and [Fe(TBuTArP)L(2)]X (2) (X = Cl(-), BF(4)(-), or Bu(4)N(+)), where the axial ligands (L) are HIm, 1-MeIm, DMAP, 4-MeOPy, 4-MePy, Py, and CN(-), were prepared. The electronic structures of these complexes were examined by (1)H NMR and electron paramagnetic resonance (EPR) spectroscopy as well as density functional theory (DFT) calculations. In spite of the fact that almost all of the bis(HIm), bis(1-MeIm), and bis(DMAP) complexes reported previously (including 2) adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, the corresponding complexes of 1 show the (d(xz), d(yz))(4)(d(xy))(1) ground state at ambient temperature. At lower temperature, the electronic ground state of the HIm, 1-MeIm, and DMAP complexes of 1 changes to the common (d(xy))(2)(d(xz), d(yz))(3) ground state. All of the other complexes of 1 and 2 carrying 4-MeOPy, 4-MePy, Py, and CN(-) maintain the (d(xz), d(yz))(4)(d(xy))(1) ground state in the NMR temperature range, i.e., 298-173 K. The EPR spectra taken at 4.2 K are fully consistent with the NMR results because the HIm and 1-MeIm complexes of 1 and 2 adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, as revealed by the rhombic-type spectra. The DMAP complex of 1 exists as a mixture of two electron-configurational isomers. All of the other complexes adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state, as revealed by the axial-type spectra. Among the complexes adopting the (d(xz), d(yz))(4)(d(xy))(1) ground state, the energy gap between the d(xy) and d(π) orbitals in 1 is always larger than that of the corresponding complex of 2. Thus, it is clear that the benzoannelation of the porphyrin ring stabilizes the (d(xz), d(yz))(4)(d(xy))(1) ground state. The DFT calculation of the bis(Py) complex of analogous iron(III) porphyrinate, [Fe(TPTBzP)(Py)(2)](+), suggests that the (d(xz), d(yz))(4)(d(xy))(1) state is more stable than the (d(xy))(2)(d(xz), d(yz))(3) state in both ruffled and saddled conformations. The lowest-energy states in the two conformers are so close in energy that their ordering is reversed depending on the calculation methods applied. On the basis of the spectroscopic and theoretical results, we concluded that 1, having 4-MeOPy, 4-MePy, and Py as axial ligands, exists as an equilibrium mixture of saddled and ruffled isomers both of which adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state. The stability of the (d(xz), d(yz))(4)(d(xy))(1) ground state is ascribed to the strong bonding interaction between the iron d(xy) and porphyrin a(1u) orbitals in the saddled conformer caused by the high energy of the a(1u) highest occupied molecular orbital in TBzTArP. Similarly, a bonding interaction occurs between the d(xy) and a(2u) orbitals in the ruffled conformer. In addition, the bonding interaction of the d(π) orbitals with the low-lying lowest unoccupied molecular orbital, which is an inherent characteristic of TBzTArP, can also contribute to stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state.  相似文献   

7.
The bis-(1,1-dimethylethylisocyanide) (tert-butylisocyanide) complexes of three iron porphyrinates (2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin, OETPP; 2,3,7,8,12,13,17,18-octamethyl-5,10,15,20-tetraphenylporphyrin, OMTPP; and 2,3,7,8,12,13,17,18-tetra-beta,beta'-tetramethylene-5,10,15,20-tetraphenylporphyrin, TC(6)TPP) have been prepared and studied by EPR and (1)H NMR spectroscopy. From EPR and NMR spectroscopic results it has been found that the ground states of the bis-(t-BuNC) complexes of OETPP, OMTPP, and TC(6)TPP are represented mainly (99.1-99.4%) as (d(xz,)d(yz))(4)(d(xy))(1) electron configurations, with an excited state lying 700 cm(-)(1) to higher energy for the OMTPP complex, and probably at lower and higher energies, respectively, for the OETPP and TC(6)TPP complexes. In the (1)H NMR spectra the (d(xz,)d(yz))(4)(d(xy))(1) electron configurations of all three complexes are indicated by the large and positive meso-phenyl-H shift differences, delta(m)-delta(o) and delta(m)-delta(p), and close to the diamagnetic shifts of groups (CH(3) or CH(2)) directly attached to the beta-carbons. However, in comparison to meso-only substituted porphyrinates such as [FeTPP(t-BuNC)(2)]ClO(4), the meso-phenyl shift differences are much smaller, especially for the OETPP complex. 2D NOESY spectra show that the flexibility of the porphyrin core decreases with increasing nonplanar distortion in the order TC(6)TPP > OMTPP > OETPP and in the same order the stability of the binding to t-BuNC ligands decreases. In addition, the structures of two crystalline forms of [FeOMTPP(t-BuNC)(2)]ClO(4) have been determined by X-ray crystallography. Both structures showed purely saddled porphyrin cores and somewhat off-axis binding of the isocyanide ligands. To our knowledge, this is the first example of a porphyrin complex with a purely saddled conformation that adopts the (d(xz,)d(yz))(4)(d(xy))(1) ground state. All structurally-characterized complexes of this electron configuration reported previously are ruffled. Therefore, we conclude that a ruffled geometry stabilizes the (d(xz,)d(yz))(4)(d(xy))(1) ground state, but is not necessary for its existence.  相似文献   

8.
The substrate and active site residues of the low-spin hydroxide complex of the protohemin complex of Neisseria meningitidis heme oxygenase (NmHO) have been assigned by saturation transfer between the hydroxide and previously characterized aquo complex. The available dipolar shifts allowed the quantitation of both the orientation and anisotropy of the paramagnetic susceptibility tensor. The resulting positive sign, and reduced magnitude of the axial anisotropy relative to the cyanide complex, dictate that the orbital ground state is the conventional "d(pi)" (d(2)(xy)(d(xz), d(yz))(3)); and not the unusual "d(xy)" (d(2)(xz)d(2)(yz)d(xy)) orbital ground state reported for the hydroxide complex of the homologous heme oxygenase (HO) from Pseudomonas aeruginosa (Caignan, G.; Deshmukh, R.; Zeng, Y.; Wilks, A.; Bunce, R. A.; Rivera, M. J. Am. Chem. Soc. 2003, 125, 11842-11852) and proposed as a signature of the HO distal cavity. The conservation of slow labile proton exchange with solvent from pH 7.0 to 10.8 confirms the extraordinary dynamic stability of NmHO complexes. Comparison of the diamagnetic contribution to the labile proton chemical shifts in the aquo and hydroxide complexes reveals strongly conserved bond strengths in the distal H-bond network, with the exception of the distal His53 N(epsilon)(1)H. The iron-ligated water is linked to His53 primarily by a pair of nonligated, ordered water molecules that transmit the conversion of the ligated H-bond donor (H(2)O) to a H-bond acceptor (OH(-)), thereby increasing the H-bond donor strength of the His53 side chain.  相似文献   

9.
13C NMR spectroscopic studies have been conducted with the hydroxide complex of Pseudomonas aeruginosa heme oxygenase (Fe(III)-OH), where OH(-) has been used as a model of the OOH(-) ligand to gain insights regarding the elusive ferric hydroperoxide (Fe(III)-OOH) intermediate in heme catabolism at ambient temperatures. Analysis of the heme core carbon resonances revealed that the coordination of hydroxide in the distal site of the enzyme results in the formation of at least three populations of Fe(III)-OH complexes with distinct electronic configurations and nonplanar ring distortions that are in slow exchange relative to the NMR time scale. The most abundant population exhibits a spin crossover between S = (1)/(2) and S = (3)/(2) spin states, and the two less abundant populations exhibit pure, S = (3)/(2) and S = (1)/(2), (d(xy)())(1) electronic configurations. We propose that the highly organized network of water molecules in the distal pocket of heme oxygenase, by virtue of donating a hydrogen bond to the coordinated hydroxide ligand, lowers its ligand field strength, thereby increasing the field strength of the porphyrin (equatorial) ligand, which results in nonplanar deformations of the macrocycle. This tendency to deform from planarity, which is imparted by the ligand field strength of the coordinated OH(-), is likely reinforced by the flexibility of the distal pocket in HO. These findings suggest that if the ligand field strength of the coordinated OOH(-) in heme oxygenase is modulated in a similar manner, the resultant large spin density at the meso carbons and nonplanar deformations of the pophyrin ring prime the macrocycle to actively participate in its own hydroxylation.  相似文献   

10.
1H NMR, (13)C NMR, and EPR spectra of six-coordinate ferric porphyrin complexes [Fe(Por)L2]ClO4 with different porphyrin structures are presented, where porphyrins (Por) are planar 5,10,15,20-tetraphenylporphyrin (TPP), ruffled 5,10,15,20-tetraisopropylporphyrin (TiPrP), and saddled 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin (OETPP), and axial ligands (L) are weak oxygen ligands such as pyridine-N-oxide, substituted pyridine-N-oxide, DMSO, DMF, MeOH, THF, 2-MeTHF, and dioxane. These complexes exhibit the spin states ranging from an essentially pure high-spin (S = 5/2) to an essentially pure intermediate-spin (S = 3/2) state depending on the field strength of the axial ligands and the structure of the porphyrin rings. Reed and Guiset reported that the pyrrole-H chemical shift is a good probe to determine the spin state in the spin admixed S = 5/2,3/2 complexes (Reed, C. A.; Guiset, F. J. Am. Chem. Soc. 1996, 118, 3281-3282). In this paper, we report that the chemical shifts of the alpha- and beta-pyrrole carbons can also be good probes to determine the spin state because they have shown good correlation with those of the pyrrole-H or pyrrole-C(alpha). By putting the observed or assumed pyrrole-H or pyrrole-C(alpha) chemical shifts of the pure high-spin and pure intermediate-spin complexes into the correlation equations, we have estimated the carbon chemical shits of the corresponding complexes. The orbital interactions between iron(III) and porphyrin have been examined on the basis of these chemical shifts, from which we have found that both the d(xy)-a(2u) interaction in the ruffled Fe(T(i)PrP)L2+ and d(xy)-a(1u) interaction in the saddled Fe(OETPP)L2+ are quite weak in the high-spin and probably in the intermediate-spin complexes as well. Close inspection of the correlation lines has suggested that the electron configuration of an essentially pure intermediate-spin Fe(T(i)PrP)L2+ changes from (d(xy), d(yz))3(d(xy))1(d(z)2)1 to (d(xy))2(d(xz), d(yz))2(d(z)2)1 as the axial ligand (L) changes from DMF to MeOH, THF, 2-MeTHF, and then to dioxane. Although the DFT calculation has indicated that the highly saddled intermediate-spin Fe(OETPP)(THF)2+ should adopt (d(xy), d(yz))3(d(xy))1(d(z)2)1 rather than (d(xy))2(d(xz), d(yz))2(d(z)2)1 because of the strong d(xy)-a(1u) interaction (Cheng, R.-J.; Wang, Y.-K.; Chen, P.-Y.; Han, Y.-P.; Chang, C.-C. Chem. Commun. 2005, 1312-1314), our 13C NMR study again suggests that Fe(OETPP)(THF)2+ should be represented as (d(xy))2(d(xz), d(yz))2(d(z)2)1 because of the weak d(xy)-a(1u) interaction. The contribution of the S = 3/2 state in all types of the spin admixed S = 5/2,3/2 six-coordinate complexes has been determined on the basis of the (13)C NMR chemical shifts.  相似文献   

11.
Bis(pyridine)[meso-tetrakis(heptafluoropropyl)porphyrinato]iron(III), [Fe(THFPrP)Py(2)](+), was reported to be the low-spin complex that adopts the purest (d(xz), d(yz))(4)(d(xy))(1) ground state where the energy gap between the iron d(xy) and d(π)(d(xz), d(yz)) orbitals is larger than the corresponding energy gaps of any other complexes reported previously (Moore, K. T.; Fletcher, J. T.; Therien, M. J. J. Am. Chem. Soc. 1999, 121, 5196-5209). Although the highly ruffled porphyrin core expected for this complex contributes to the stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state, the strongly electron withdrawing C(3)F(7) groups at the meso positions should stabilize the (d(xy))(2)(d(xz), d(yz))(3) ground state. Thus, we have reexamined the electronic structure of [Fe(THFPrP)Py(2)](+) by means of (1)H NMR, (19)F NMR, and electron paramagnetic resonance (EPR) spectroscopy. The CD(2)Cl(2) solution of [Fe(THFPrP)Py(2)](+) shows the pyrrole-H signal at -10.25 ppm (298 K) in (1)H NMR, the CF(2)(α) signal at -74.6 ppm (298 K) in (19)F NMR, and the large g(max) type signal at g = 3.16 (4.2 K) in the EPR. Thus, contrary to the previous report, the complex is unambiguously shown to adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state. Comparison of the spectroscopic data of a series of [Fe(THFPrP)L(2)](+) with those of the corresponding meso-tetrapropylporphyrin complexes [Fe(TPrP)L(2)](+) with various axial ligands (L) has shown that the meso-C(3)F(7) groups stabilize the (d(xy))(2)(d(xz), d(yz))(3) ground state. Therefore, it is clear that the less common (d(xz), d(yz))(4)(d(xy))(1) ground state can be stabilized by the three major factors: (i) axial ligand with low-lying π* orbitals, (ii) ruffled porphyrin ring, and (iii) electron donating substituent at the meso position.  相似文献   

12.
Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2]+, where axial ligands (L) are imidazole (HIm) and tert-butylisocyanide ((t)BuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitals. As for the bis(HIm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(HIm) complexes. Since these complexes adopt the (d(xy))2(d(xz), d(yz))3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dpi orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3e(g)-like orbitals. A fairly small substituent effect is understandable because the 3e(g)-like orbitals have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial HIm is replaced by (t)BuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(HIm) complexes. Since the bis((t)BuNC) complexes adopt the (d(xz), d(yz))4(d(xy))1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitals that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (d(xz), d(yz))4(d(xy))1 ground state should take place between the d(xy) and a(2u)-like orbital rather than between the dxy and a(1u)-like orbital, though the latter interaction is symmetry-allowed in saddled D(2d) complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the d(xy) orbital due to a smaller energy gap between the d(xy) and dpi orbitals. In fact, the energy levels of the d(xy) and dpi orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (d(xy))2(d(xz), d(yz))3 ground state despite the coordination of (t)BuNC.  相似文献   

13.
The electronic states of a series of saddle-shaped porphyrin complexes [Fe(OMTPP)L(2)](+) and [Fe(TBTXP)L(2)](+) have been examined in solution by (1)H NMR, (13)C NMR, and EPR spectroscopy and by magnetic measurements. While [Fe(OMTPP)(DMAP)(2)](+) and [Fe(TBTXP)(DMAP)(2)](+) maintain the low-spin (S = (1)/(2)) state, [Fe(OMTPP)(THF)(2)](+) and [Fe(TBTXP)(THF)(2)](+) exhibit an essentially pure intermediate-spin (S = (3)/(2)) state over a wide range of temperatures. In contrast, the Py and 4-CNPy complexes of OMTPP and TBTXP exhibit a spin transition from S = (3)/(2) to S = (1)/(2) as the temperature was decreased from 300 to 200 K. Thus, the magnetic behavior of these complexes is similar to that of [Fe(OETPP)Py(2)](+) reported in our previous paper (Ikeue, T.; Ohgo, Y.; Yamaguchi, T.; Takahashi, M.; Takeda, M.; Nakamura, M. Angew. Chem., Int. Ed. 2001, 40, 2617-2620) in the context that all these complexes exhibit a novel spin crossover phenomenon in solution. Close examination of the NMR and EPR data of [Fe(OMTPP)L(2)](+) and [Fe(TBTXP)L(2)](+) (L = Py, 4-CNPy) revealed, however, that these complexes adopt the less common (d(xz), d(yz))(4)(d(xy))(1) electron configuration at low temperature in contrast to [Fe(OETPP)Py(2)](+) which shows the common (d(xy))(2)(d(xz), d(yz))(3) electron configuration. These observations have been attributed to the flexible nature of the OMTPP and TBTXP cores as compared with that of OETPP; the relatively flexible OMTPP and TBTXP cores can ruffle the porphyrin ring and adopt the (d(xz), d(yz))(4)(d(xy))(1) electron configuration at low temperature. Therefore, this study reveals that the rigidity of porphyrin cores is an important factor in determining the spin crossover pathways.  相似文献   

14.
A series of low-spin six-coordinate (tetraphenylchlorinato)iron(III) complexes [Fe(TPC)(L)2]+/- (L = 1-MeIm, CN-, 4-CNPy, and (t)BuNC) have been prepared, and their (13)C NMR spectra have been examined to reveal the electronic structure. These complexes exist as the mixture of the two isomers with the (d(xy))2(d(xz), d(yz))3 and (d(xz), d(yz))4(d(xy))1 ground states. Contribution of the (d(xz), d(yz))4(d(xy))1 isomer has increased as the axial ligand changes from 1-MeIm, to CN(-) (in CD2Cl2 solution), CN- (in CD(3)OD solution), and 4-CNPy, and then to tBuNC as revealed by the meso and pyrroline carbon chemical shifts; the meso carbon signals at 146 and -19 ppm in [Fe(TPC)(1-MeIm)2]+ shifted to 763 and 700 ppm in [Fe(TPC)(tBuNC)2]+. In the case of the CN- complex, the population of the (d(xz), d(yz))4(d(xy))1 isomer has increased to a great extent when the solvent is changed from CD2Cl2 to CD3OD. The result is ascribed to the stabilization of the d(xz) and d(yz) orbitals of iron(III) caused by the hydrogen bonding between methanol and the coordinated cyanide ligand. Comparison of the 13C NMR data of the TPC complexes with those of the TPP, OEP, and OEC complexes has revealed that the populations of the (d(xz), d(yz))4(d(xy))1 isomer in TPC complexes are much larger than those in the corresponding TPP, OEC, and OEP complexes carrying the same axial ligands.  相似文献   

15.
A theoretical comparative study of complexes of porphyrin (P), porphyrazine (Pz), phthalocyanine (Pc), porphycene (Pn), dibenzoporphycene (DBPn), and hemiporphyrazine (HPz) with iron (Fe) has been carried out using a density functional theory (DFT) method. The difference in the core size and shape of the macrocycle has a substantial effect on the electronic structure and properties of the overall system. The ground states of FeP and FePc were identified to be the 3A2g [(d(xy))2(d(z)2)2(d(pi))2] state, followed by 3E(g) [(d(xy))2(d(z)2)1(d(pi))3]. For FePz, however, the 3E(g)-3A2g energy gap of 0.02 eV may be too small to distinguish between the ground and excited states. When the symmetry of the macrocycle is reduced from D4h to D2h, the degeneracy of the d(pi) (d(xz), d(yz)) orbitals is removed, and the ground state becomes 3B2g [(d(xy))2(d(z)2)1(d(yz))2(d(xz))1] or 3B3g [...(d(yz))1(d(xz))2] for FePn, FeDBPn, and FeHPz. The calculations also show how the change of the macrocycle can influence the axial ligand coordination of pyridine (Py) and CO to the Fe(II) complexes. Finally, the electronic structures of the mono- and dipositive and -negative ions for all the unligated and ligated iron macrocycles were elucidated, which is important for understanding the redox properties of these compounds. The differences in the observed electrochemical (oxidation and reduction) properties between metal porphycenes (MPn) and metal porphyrins (MP) can be accounted for by the calculated results (orbital energy level diagrams, ionization potentials, and electron affinities).  相似文献   

16.
The ground- and excited-state properties of a Ni(II) porphyrin bearing peripheral alkylthio group, NiOMTP (OMTP = 2,3,7,8,12,13,17,18-octakis methylthio porphyrinate) have been investigated by steady-state and time-resolved absorption spectrometry and DFT/TDDFT theoretical methods. Several conformations corresponding to different deformations of the porphyrin core and to different orientations of the alkylthio groups have been theoretically explored. The nearly degenerate, purely ruffled D(2d) and hybrid (ruffled with a modest degree of saddling) D(2) conformations, both characterized by an up-down (ud) orientation of the vicinal methylthio groups are by far the preferred conformations in the "gas phase". In contrast to NiOEP, it is the orientation of the peripheral substituents rather than the type and degree of distortions of the porphyrin core that determines the stability of the NiOMTP conformers. The ground-state electronic absorption spectra of NiOMTP exhibit significant changes compared to its parent NiP and beta-alkylated analogues, such as NiOEP, resulting in a considerable red shift of the B and the Q bands, intensification and broadening of the Q band, and additional weak absorptions in the region between the Q and B bands. These spectral changes can be understood in terms of the electronic effects of the methylthio groups with nonplanar distortions of the porphyrin ring playing a very minor role. Transient absorption measurements with sub-picosecond resolution performed in toluene and TDDFT calculations reveal that following photoexcitation, NiOMTP deactivates by the pathway 1(pi,pi) --> 3(d(z2),d(x2-y2))--> ground state. The (d,d) state exhibits complex spectral evolution over ca. 8 ps, interpreted in terms of vibrational relaxation and cooling. The cold ligand-field excited state decays with a lifetime of 320 ps. At variance with the highly distorted nickel porphyrins but similar to the planar analogues, the (d,d) spectrum of NiOMTP has transient absorption bands immediately to the red of the bleaching of the ground-state Q and B bands.  相似文献   

17.
The electronic structures of six-coordinate iron(III) octaethylmonoazaporphyrins, [Fe(MAzP)L 2] (+/-) ( 1), have been examined by means of (1)H NMR and EPR spectroscopy to reveal the effect of meso-nitrogen in the porphyrin ring. The complexes carrying axial ligands with strong field strengths such as 1-MeIm, DMAP, CN (-), and (t)BuNC adopt the low-spin state with the (d xy ) (2)(d xz , d yz ) (3) ground state in a wide temperature range where the (1)H NMR and EPR spectra are taken. In contrast, the complexes with much weaker axial ligands, such as 4-CNPy and 3,5-Cl 2Py, exhibit the spin transition from the mainly S = 3/2 at 298 K to the S = 1/2 with the (d xy ) (2)(d xz , d yz ) (3) ground state at 4 K. Only the THF complex has maintained the S = 3/2 throughout the temperature range examined. Thus, the electronic structures of 1 resemble those of the corresponding iron(III) octaethylporphyrins, [Fe(OEP)L 2] (+/-) ( 2). A couple of differences have been observed, however, in the electronic structures of 1 and 2. One of the differences is the electronic ground state in low-spin bis( (t)BuNC) complexes. While [Fe(OEP)( (t)BuNC) 2] (+) adopts the (d xz , d yz ) (4)(d xy ) (1) ground state, like most of the bis( (t)BuNC) complexes reported previously, [Fe(MAzP)( (t)BuNC) 2] (+) has shown the (d xy ) (2)(d xz , d yz ) (3) ground state. Another difference is the spin state of the bis(3,5-Cl 2Py) complexes. While [Fe(OEP)(3,5-Cl 2Py) 2] (+) has maintained the mixed S = 3/2 and 5/2 spin state from 298 to 4 K, [Fe(MAzP)(3,5-Cl 2Py) 2] (+) has shown the spin transition mentioned above. These differences have been ascribed to the narrower N4 cavity and the presence of lower-lying pi* orbital in MAzP as compared with OEP.  相似文献   

18.
Electronic absorption and Soret-excited resonance Raman (RR) spectra are reported for bis-N-alkylimidazole and bis-pyridine complexes of various cross-trans-linked iron(II)-"basket-handle" porphyrins (Fe(II)-BHP) in methylene chloride. These compounds enable us to characterize the spectroscopic properties of ruffled six-coordinated low-spin Fe(II)-porphyrin complexes. The visible absorption spectra show that the Q and B bands are progressively red-shifted when the handles are shortened and/or when the steric hindrance of the axial ligands is increased. This effect is accompanied by both a decrease in RR frequency of the nu(2) mode and an increase in frequency of the nu(8) and nu(s)(Fe-ligand(2)) modes. More precisely, an inverse linear correlation is found between the frequencies of the nu(2) and nu(8) modes. For each ligation state, the positions of the absorption bands are also linearly correlated with the frequency of the nu(2) or nu(8) mode. All of these spectroscopic data reveal that the degree of ruffling of the Fe(II)-BHP complexes is increased by the N-methylimidazole --> pyridine axial substitutions, presumably because the mutual steric strains between the axial ligand rings, the porphyrin macrocycle and the porphyrin handles are increased. The present study provides a first basis for discerning ruffled conformations from planar and other nonplanar structures in ferrous heme proteins.  相似文献   

19.
20.
Through density functional calculation and NMR spectroscopy, an unusual intermediate-spin electronic structure (d(xz)d(yz))3(d(xy))1(d(z)2)1 has been assigned to the six-coordinate saddled [Fe(OETPP)(THF)2]+ complex instead of the corresponding ruffled [Fe(TiPrP)(THF)2]+ complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号