首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A speciation approach based on orthogonal chromatographic systems coupled to inductively coupled plasma mass spectrometry (ICP-MS) was used to characterise the biological response of free-living mice Mus spretus to environmental pollution caused by arsenic in different areas of the Do?ana National Park (south-west Spain). The relative presence of inorganic and organic forms of arsenic was studied in cytosolic extracts from high metabolic activity organs of Mus spretus mice: kidneys, liver, and brain. An instrumental coupling of size-exclusion chromatography with UV and collision/reaction cell-ICP-MS detectors (SEC-UV-ICP-ORC-MS) both in analytical and preparative scale was used for this purpose. The results showed the presence of low molecular mass (LMM) molecules linked to arsenic in these tissues especially in the kidneys, where the presence of these arsenic metabolites was higher. On the other hand, the presence of these arsenicals varied from one area to the other, which can be related to a different occurrence of contaminants. These low molecular mass fractions were collected by preparative SEC chromatography for later study with ion exchange chromatography and detection by ICP-ORC-MS, using both anionic and cationic columns. The results showed the higher presence of MMA and DMA in kidneys of mice caught in contaminated areas and the existence of small amounts of unidentified arsenicals when cation-exchange chromatography was used, which could be related to the presence of dimethylarsinoylethanol (DMAE), thioarsenic species, or arsenocholine (AsC).  相似文献   

2.
An automated system for hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer is described. Arsines are preconcentrated and separated in a Chromosorb filled U-tube. An automated cryotrapping unit, employing nitrogen gas formed upon heating in the detection phase for the displacement of the cooling liquid nitrogen, has been developed. The conditions for separation of arsines in a Chromosorb filled U-tube have been optimized. A complete separation of signals from arsine, methylarsine, dimethylarsine, and trimethylarsine has been achieved within a 60 s reading window. The limits of detection for methylated arsenicals tested were 4 ng l(-1). Selective hydride generation is applied for the oxidation state specific speciation analysis of inorganic and methylated arsenicals. The arsines are generated either exclusively from trivalent or from both tri- and pentavalent inorganic and methylated arsenicals depending on the presence of L-cysteine as a prereductant and/or reaction modifier. A TRIS buffer reaction medium is proposed to overcome narrow optimum concentration range observed for the L-cysteine modified reaction in HCl medium. The system provides uniform peak area sensitivity for all As species. Consequently, the calibration with a single form of As is possible. This method permits a high-throughput speciation analysis of metabolites of inorganic arsenic in relatively complex biological matrices such as cell culture systems without sample pretreatment, thus preserving the distribution of tri- and pentavalent species.  相似文献   

3.
Sediments, as sources of microorganisms, were added to two kinds of media, 1/5 ZoBell 2216E and a solution of inorganic salts, which contained inorganic arsenic(III), inorganic arsenic(V), methanearsonic acid, dimethyl- arsinic acid, trimethylarsine oxide, tetramethylarsonium salt or arsenocholine. After 17 days of incubation at 20 °C, the arsenicals that had accumulated in the microorganisms were analysed by high-performance liquid chromatography (HPLC). While the more toxic arsenicals [inorganic arsenic(III), inorganic arsenic(V), methanearsonic acid, dimethylarsinic acid] were not converted in the microorganisms, trimethylarsine oxide and tetramethylarsonium salt were considerably degraded to inorganic arsenic(V), and arsenocholine to arsenobetaine. Arsenobetaine that had accumulated in the microorganisms was extracted and confirmed by thin-layer chromatography (TLC) and fast atom bombardment (FAB) mass spectrometry.  相似文献   

4.
 The National Institute for Environmental Studies (NIES) recently prepared two candidate certified reference materials (CRMs) for arsenicals to meet the growing demand for the quality assurance of arsenic speciation analysis. The NIES candidate CRM No. 14 Brown Alga was prepared from Hijiki seaweed for the certification of inorganic arsenic content, and No. 15 Scallop was prepared from adductor muscle of scallop for the certification of arsenobetaine content. The preparation of the candidate CRMs is briefly described. Cooperative analyses for total arsenic content of the candidate CRMs have been underway. The preliminary speciation analysis at NIES revealed difficulty in establishing suitable conditions for extracting arsenic species from the materials. Chromatograms of arsenic species by a high performance liquid chromatography-inductively coupled plasma mass spectrometric detection system are presented to provide information about arsenic species present in these candidate CRMs.  相似文献   

5.
Some issues regarding sample preparation for arsenic speciation analyses are briefly discussed. In particular, the use of a single set of extraction conditions for the many different arsenicals present in biological samples is questioned. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Arsenic (+3 oxidation state) methyltransferase (As3mt) plays a central role in the enzymatically catalyzed conversion of inorganic arsenic into methylated metabolites. Most studies of the metabolism and disposition of arsenicals following exposure to inorganic arsenic focus on the formation and fate of methylated oxyarsenicals. However, recent research has shown methylated thioarsenicals to be another important class of metabolites of inorganic arsenic. Here, we report on the presence of methylated oxy- and thioarsenicals in urine and liver from wild-type mice that efficiently methylate inorganic arsenic and from As3mt knockout mice that lack arsenic methyltransferase activity. Following a single oral dose of 0.5 mg of arsenic as arsenate/kg body weight, urine from wild-type mice contained methylated oxyarsenicals and unknown arsenicals. Further analysis identified one unknown arsenical in urine of wild-type mice as dimethylmonothioarsinic acid. In addition, another unknown arsenical in urine of wild-type mice that occurred in the urine of about 20 % of arsenate-treated mice. The presence of low levels of methylated arsenicals in liver digests of As3mt knockout mice may reflect the activity of other methyltransferases or the absorption of methylated arsenicals formed by the microbiota of the gastrointestinal tract. The lack of methylated thioarsenicals in urine of As3mt knockout mice suggests a close link between the processes that form methylated oxy- and thioarsenicals.  相似文献   

7.
Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the AsV methylation pathway was generally considered to be a detoxification pathway, but cellular and animal studies involving MMAIII (mono metyl arsonous acid) and DMAIII (dimethyl arsinous acid) have indicated that their toxicities meet or exceed that of iAs, suggesting an activation process. In addition, thiolated arsenic metabolites were observed in urine after oral exposure of inorganic arsenic in some studies, for which the toxicological profile was not yet fully characterized in human cells. Studies have revealed that microorganisms from the gut environment are important contributors to arsenic speciation changes. This presystemic metabolism necessitates the development of protocols that enable the detection of not only inorganic arsenic species, but also pentavalent and trivalent methylated, thiolated arsenicals in a gastrointestinal environment. We aim to study the biotransformation of arsenic (As) using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME). To be able to analyze the arsenicals resulting from biotransformation reactions occurring in this system, a method using liquid chromatography hyphenated to an inductively coupled plasma mass spectrometer (HPLC‐ICP‐MS) was developed. A Hamilton PRP‐X100 anion exchange column was used. The method allowed separation, identification and quantification of AsIII(arsenite), AsV(arsenate), DMAV(dimethylarsinicacid), MMAV(monomethylarsonicacid) and MMMTA (monomethylmonothioarsenate). Attempts to optimize the same method for also separating MMAIII and DMAIII did not succeed. These compounds could be successfully separated using a method based on the use of a Zorbax C18 column. The properties of the column, buffer strength, pH and polar nature of mobile phase were monitored and changed to optimize the developed methods. Linearity, sensitivity, precision, accuracy and resolution of both methods were checked. The combination of the two methods allowed successful quantification of arsenic species in suspensions sampled in vitro from the SHIME reactor or in vivo from the human colon and feces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A pyrolysis-neutron activation analysis (NAA) procedure has been developed and applied to the speciation of arsenic in solid biological samples. The method involves the retention of the inorganic arsenic in the pyrolysis boat by the addition of NaOH, the volatilization and trapping of the organic arsenic on a cation exchange resin and the subsequent NAA of the resin for the determination of the trapped arsenic. The method, developed with the aid of radiochemically labelled arsenic compounds, has been applied to the determination of the ratio of inorganic to organic arsenic species in commercical shrimps as well as in NBS standard reference materials such as oysters and orchard leaves. The results show different relative amounts of inorganic arsenic content in the samples analysed. In the shrings the fraction of inorganic arsenic was of the order of 20%, in the oysters the inorganic arsenic consfituted 60% of the total arsenic concentration while in the samples of vegetable origin more than 98% of the arsenic was of inorganic nature.  相似文献   

9.
The distribution of arsenic species, including trivalent methylarsenicals, was observed in coastal seawater of Tosa Bay and Uranouchi Inlet Japan. In Tosa Bay, most arsenic was dissolved in the inorganic form throughout the year and the concentration of total dissolved arsenic was higher than that in Uranouchi Inlet. The sum of methylarsenicals found in surface waters comprised 2–25% and 10–82% of the total dissolved arsenic in Tosa Bay and Uranouchi Inlet, respectively. In Uranouchi Inlet, seasonal variations in the concentrations of arsenicals were observed both in the water column and in surface sediments. The maximum concentrations of methylarsenicals appeared during summer, and became comparable to those of inorganic arsenicals in surface water. The concentration of trivalent methylarsenicals was usually low, and their seasonal changes seemed to be independent of those of the pentavalent species. The variations in methylarsenic(V) concentration did not coincide with those of chlorophyll a in either Tosa Bay or Uranouchi Inlet. These results suggested that methylarsenic(V) in natural waters was produced not directly by the activity of phytoplankton but through decomposition of organic matter by bacteria.  相似文献   

10.
Arsenic speciation in the Itchen estuary and Southampton Water (UK) has been shown to vary seasonally, with detectable (>0.02μg As dm?3) dissolved arsenic(III) and methylated arsenic only being present from May to early October. This corresponds to the time period during which water temperatures exceed 12°C. For the remainder of the year, inorganic arsenic(V) was the only detectable species. At its peak, ca 30% of the dissolved arsenic was present as methylated forms with dimethylarsenic (DMAs) being the predominant bioarsenical. Significant quantities of monomethyl-arsenic (MMAs) and inorganic arsenic(III) were also present, however. The concentrations of the bioarsenical species varied with position in the estuary and generally increased with salinity. Measurements made during the period of peak algal activity implicated the highsalinity area of the estuary as the most probable region in which the methylated arsenicals are generated. At some sites, a distinct lag was observed between the appearance of dimethylarsenic and the detection of arsenic(III)and monomethylarsenic. Chlorophyll a concentration proved to be a poor predictor of the appearance of reduced and methylated arsenic in the water column. Possible sources of dissolved methylated arsenic are discussed.  相似文献   

11.
An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means of extracting arsenicals from ribbon kelp. The effect of the experimentally controllable ASE parameters (pressure, temperature, static time, and solvent composition) on the extraction efficiencies of arsenicals from seaweed was investigated. The extraction efficiencies for ribbon kelp (approximately 72.6%) using the ASE were fairly independent ¶(< 7%) of pressure, static time and particle size after 3 ASE extraction cycles. The optimum extraction conditions for the ribbon kelp were obtained by using a 3 mL ASE cell, 30/70 (w/w) MeOH/H2O, 500 psi (1 psi = 7 KPa), ambient temperature, 1 min heat step, 1 min static step, 90% vol. flush, and a 120 s purge. Using these conditions, two other seaweed products produced extraction efficiencies of 25.6% and 50.5%. The inorganic species present in the extract represented 62.5% and 27.8% of the extracted arsenic. The speciation results indicated that both seaweed products contained 4 different arsenosugars, DMA (dimethylarsinic acid), and As(V). One seaweed product also contained As(III). Both of these seaweed products contained an arsenosugar whose molecular weight was determined to be 408 and its structure was tentatively identified using ion chromatography-electrospray ionization-mass spectrometry/mass spectrometry (IC-ESI-MS/MS).  相似文献   

12.
采用微波辅助提取-液相色谱-氢化物发生-原子荧光光谱法(LC-HG-AFS)联用技术分析了太湖沉积物中砷的形态[亚砷酸(As(III))、二甲基砷酸钠(DMA)、一甲基砷酸二钠(MMA)和砷酸As(V)]。测得沉积物中以无机砷为主,且以As(V)居多。选定以1mol/L的磷酸和0.1mol/L抗坏血酸为提取液,在微波辅助萃取(功率为60W,时间12min)下,萃取率达79.84%~91.57%,回收率在94.78%~107.6%之间。4种砷的形态在0~160μg/L之间时线性良好,检测限为0.6~2.3μg/L,相对标准偏差RSD为1.62%~2.20%。方法具有简便、快速、灵敏的特点。  相似文献   

13.
Lipid-soluble arsenicals (arsenolipids) occur in a wide range of biological samples where they may play a key role in the biosynthesis of organoarsenic compounds from inorganic arsenic. The study of these compounds has been hindered, however, by the lack of a suitable analytical technique able to separate and measure the various lipid species. As a source of arsenolipids, we used 10 crude fish oils from various regions of the world. Total arsenic analyses on the fish oils, performed with ICPMS following acid digestion with microwave-assisted heating, gave concentrations from 4.3 to 10.5 mg As kg(-1). All of the arsenic was soluble in non-polar solvents such as hexane. Analysis of the fish oils for arsenolipids was performed by normal phase HPLC-ICPMS with various mixtures of organic solvents as mobile phases. Inherent problems of instability associated with the introduction of organic solvents to the plasma were overcome by the use of reduced column flow, a chilled spray chamber, and the addition of oxygen directly to the plasma. All ten fish oils appeared to contain the same 4-6 major arsenolipids, but in varying amounts depending on the origin of the fish. Further chromatography with both normal phase and reversed-phase conditions on some of the oils indicated the presence of many more minor arsenolipids. Quantification was achieved by external calibration against triphenylarsine oxide or triphenylarsine sulfide, and the sum of species following HPLC of the oils matched well the total arsenic results (92-107%). The method was applied to samples of food supplements (fish oil capsules) and a packaged food product (cod liver) whereby arsenolipids were measured and found to be significant arsenic constituents. This study represents the first attempt to directly measure intact arsenolipids and, with appropriate sample preparation, may be suitable for quantitative measurement of these arsenicals in a range of biological samples, including foodstuffs.  相似文献   

14.
Arsenic is a ubiquitous element. Its toxicity, mobility, and bioaccumulation depend usually on its chemical form, and therefore, arsenic speciation is indispensable for the assessment of environmental risk and human hazard. Little is known about the effect of sample preparation procedures, such as drying and storage, on the resulting arsenic speciation. In this study, we investigated the influence of different drying methods and storage conditions on the arsenic speciation in mineral soils, organic soils, and plants. Drying soils and plants using different methods may change the concentrations of the total methanol–water (20%,?v/v) extractable arsenic, the proportion of organic arsenic and the ratio of arsenite-to-arsenate. Loss of methanol–water extractable arsenic compounds (up to 63%) was observed particularly in the samples rich in water. Following drying, the speciation of organic arsenic changed less than that of inorganic arsenic. Drying showed little influence on the total arsenic determination. None of the storage methods tested could preserve the arsenic speciation in organic soils and plants, although arsenic speciation after one-month storage varied less in freeze-dried samples than wet samples. Storage of the samples at low temperatures (2 or??20°C) had the largest impact on the samples rich in organic matters, leading to less arsenic being extractable by methanol–water. Both drying and storage of the soil and plant samples changed apparently the arsenic speciation. Therefore, we recommend conducting the arsenic speciation possibly with fresh and wet samples, so that the results of arsenic speciation may be more approaching the original states.  相似文献   

15.

A method is presented for arsenic speciation analysis of an oyster sample using ion chromatography coupled with an inductively coupled plasma mass spectrometry (ICP-MS) instrument. A strong anion exchange resin was employed with a step gradient elution of 0.1 mM/0.1 M K 2 SO 4 at pH 10.2. Arsenobetaine and dimethylarsinic acid were determined following extraction based on trypsin enzymolysis with 95-100% extraction efficiency. Limits of detection in the range 0.1-0.3 mg kg m 1 of arsenic were obtained for organic arsenic species. No inorganic arsenic was detected. Validation was performed using TORT-2 as a certified reference material. Although high performance liquid chromatography (HPLC) coupled to ICP-MS is an effective method for speciation analysis it is not always necessary to obtain such a detailed picture. A simple liquid chromatographic separation technique based upon mini-column technology is presented. It was developed to obtain a fast, efficient and reliable separation of inorganic from organic, i.e. assumed toxic from non-toxic, arsenic and selenium species suitable for use as an initial screening method for environmental analysis. Two types of strong anion exchange resin were tested. Excellent separation was obtained for both min-column resins and analysis times were within 7 min. Limits of detection obtained for inorganic arsenic, organic arsenic, selenomethionine, Se IV and Se VI were 1.6, 1.8, 66, 32 and 22 µg kg m 1 , respectively.  相似文献   

16.
Procedures are described for the determination of arsenicals in water and urine by flameless atomic absorption spectrometry ; these avoid the isolation and transfer of arsine(s) and permit some differentiation between the inorganic and organic (methyl) arsenic content of a sample. Samples of water or urine are heated with hydrochloric acid, and treated with iodide ion. Arsenic species, as the iodides, are extracted into chloroform and then either reextracted into deionized water for measurement of inorganic arsenic, or reextracted into dilute dichromate solution for total arsenic determination; the difference furnishes levels of organic arsenic. Aliquots of the final aqueous extracts are analyzed by graphite-furnace atomic absorption spectrometry, with an arsenic electrodeless discharge lamp. The lower detection limit for water and urine was 10 p.p.b. The recoveries (and Sg values) were: 87.0% (3.0) and 93.0 % (7.9), for inorganic arsenic in water and urine, respectively; 92.3 % (5.3) for mixtures of inorganic and methylated arsenic (total arsenic) in water and urine; and 98.7 % (3.9) and 88.4% (3.6) for dimethylarsenic in water and urine, respectively.  相似文献   

17.
The concentration and speciation of arsenic incorporated by plants grown in the presence of different arsenic compounds was compared, and the influence of plant sample pretreatment and extraction procedures on the recovery and reliability of speciation analyses was studied. It was concluded that sample pretreatment greatly affected the extraction efficiency, but did not change arsenic speciation. The most suitable extraction procedure involved dried plant material without the use of liquid nitrogen. To assess the ability of White mustard to uptake arsenic in different forms, samples were cultivated in nutrient solutions containing either As(III), As(V), monomethylarsonic acid (MMA) or dimethylarsinic acid (DMA). The translocation factor was the highest (0.70) when DMA was added to the nutrient solution, however the overall As concentration in plant tissues was the lowest in this case. Only inorganic As was found in plant tissues when either As(III) or As(V) was added to the nutrient solution. When organic arsenic was present in the nutrient medium, however, it was partially transformed by the plants into inorganic forms.  相似文献   

18.
《Electrophoresis》2018,39(4):635-644
Arsenic is a toxic element extensively studied in the marine environment due to differential toxicological effects of inorganic and organic species. In the present work, the bivalve Scrobicularia plana was exposed to AsV (10 and 100 μg/L) for 14 days to evaluate the metabolic perturbations caused by this element. Arsenic speciation and metabolomic analysis were performed in the digestive gland of the bivalve using two complementary analytical platforms based on inorganic and organic mass spectrometry. It has been observed the greater presence of the innocuous specie arsenobetaine produced in this organism as defense mechanism against arsenic toxicity, although significant concentrations of methylated and inorganic arsenic were also present, depending on the level of arsenic in aqueous media. Complementarily, a metabolomic study based on mass spectrometry and statistical discriminant analysis allows a good classification of samples associated to low and high As(V) exposure in relation to controls. About 15 metabolites suffer significant changes of expression by the presence of As(V): amino acids, nucleotides, energy‐related metabolites, free fatty acids, phospholipids and triacylglycerides, which can be related to membrane structural and functional damage. In addition, perturbation of the methylation cycle, associated with the increase of homocysteine and methionine was observed, which enhance the methylation of toxic inorganic arsenic to less toxic dimethylarsenic.  相似文献   

19.
Han  Chao  Cao  Xuan  Yu  Jing-Jing  Wang  Xiao-Ru  Shen  Yan 《Chromatographia》2009,69(5-6):587-591

Sargassum fusiforme, the common Chinese edible seaweeds, was investigated for total arsenic concentration by ICP-MS and for individual arsenic species by LC-ICP-MS. For this purpose, a microwave-assisted procedure was used for the extraction of arsenic species in freeze-dried seaweed and an analytical procedure for the sensitive and efficient speciation of the arsenic species As(III), dimethylarsinic acid, monomethyl arsonic acid, As(V), arsenobetaine and arsenocholine was optimized. Arsenic compounds were extracted from the seaweed with a methanol/water mixture; the extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion exchange column. The arsenic species in Sargassum fusiforme are abundant. In some sample, the majority of arsenic compounds detected in the extracts were inorganic species, with a predominance of As (V). In addition, some significant amounts of unidentified arsenic compounds were also observed in the extracts.

  相似文献   

20.
We describe a method for continuously monitoring both hydride- and nonhydride-forming arsenic species in 10-microL microdialysate samples by coupling together on-line high-performance liquid chromatography (HPLC), a post-column UV/TiO2 film reactor, and hydride generation (HG) inductively coupled plasma mass spectrometry (ICP-MS). To maximize the signal intensities of the desired arsenic species, we optimized the photocatalytic oxidation efficiency of the analyte species and used a rapid on-line pre-reduction process to convert the oxidized species into As(III) prior to HG-ICP-MS determination. The UV/nano-TiO2 film reactor was manufactured by coating nano-TiO2 onto the interior of a glass tube. Impregnation and sol-gel methods were employed to deposit the TiO2 films, and their effectiveness for the oxidation of organic arsenicals was compared. To enhance the decomposition efficiency of organic arsenicals, we investigated the effects of the acidity and the composition of the column effluent. Because of the improved HG efficiency toward the tested arsenicals and the adoption of a segmented flow technique to retain the peak resolution in our on-line LC-UV/nano-TiO2 film reactor-HG-ICP-MS instrument, the detection limits for arseneous acid [As(III)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenic acid [As(V)], and arsenobetaine (AsB) were all in the submicrogram-per-liter range (based on 3 sigma) for 10-microL injections. A series of validation experiments--analyses of certified reference urine and rabbit serum samples--indicated that these methods can be applied satisfactorily to the continuous determination of As(III), MMA, DMA, As(V), and AsB in blood and in the extracellular space of target organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号