首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of a series of substituted pyridines by dimethyldioxirane (1) produced the expected N-oxides in quantitative yields. The second order rate constants (k2) for the oxidation of a series of substituted pyridines (2a-g) by dimethyldioxirane were determined in dried acetone at 23 °C. An excellent correlation with Hammett sigma values was found (ρ = −2.91, r = 0.995). Kinetic studies for the oxidation of 4-trifluoromethylpyridine by 1 were carried out in the following dried solvent systems: acetone (k2 = 0.017 M−1 s−1), carbon tetrachloride/acetone (7:3; k2 = 0.014 M−1 s−1), acetonitrile/acetone (7:3; k2 = 0.047 M−1 s−1), and methanol/acetone (7:3; k2 = 0.68 M−1 s−1). Kinetic studies of the oxidation of pyridine by 1 versus mole fraction of water in acetone [k2 = 0.78 M−1 s−1 (χ = 0) to k2 = 11.1 M−1 s−1 (χ = 0.52)] were carried out. The results showed the reaction to be very sensitive to protic, polar solvents.  相似文献   

2.
The hydrogen peroxide-oxidation of o-phenylenediamine (OPD) catalyzed by horseradish peroxidase (HRP) at 37 °C in 50 mM phosphate buffer (pH 7.0) was studied by calorimetry. The apparent molar reaction enthalpy with respect to OPD and hydrogen peroxide were −447 ± 8 kJ mol−1 and −298 ± 9 kJ mol−1, respectively. Oxidation of OPD by H2O2 catalyzed by HRP (1.25 nM) at pH 7.0 and 37 °C follows a ping-pong mechanism. The maximum rate Vmax (0.91 ± 0.05 μM s−1), Michaelis constant for OPD Km,S (51 ± 3 μM), Michaelis constant for hydrogen peroxide Km,H2O2 (136 ± 8 μM), the catalytic constant kcat (364 ± 18 s−1) and the second-order rate constants k+1 = (2.7 ± 0.3) × 106 M−1 s−1 and k+5 = (7.1 ± 0.8) × 106 M−1 s−1 were obtained by the initial rate method.  相似文献   

3.
The kinetics of oxidative addition of CH3I to [Rh(FcCOCHCOCF3)(CO)(PPh3)], where Fc = ferrocenyl and (FcCOCHCOCF3) = fctfa = ferrocenoylacetonato, have been studied utilizing UV/Vis, IR, 1H and 31P NMR techniques. Three definite sets of reactions involving isomers of at least two distinctly different classes of RhIII-alkyl and two different classes of RhIII-acyl species were observed. Rate constants for this reaction in CHCl3 at 25 °C, applicable to the reaction sequence below, were determined as k1 = 0.00611(1) dm3 mol−1 s−1, k−1 = 0.0005(1) s−1, k3 = 0.00017(2) s−1 and k4 = 0.0000044(1) s−1 while k−3 ? k3 and k−4 ? k4 but both ≠0. The indeterminable equilibrium K2 was fast enough to be maintained during RhI depletion in the first set of reactions and during the RhIIIalkyl2 formation in the second set of reactions. From a 1H and 31P NMR study in CDCl3, Kc1 was found to be 0.68, Kc2 = 2.57, Kc3 = 1.00, Kc4 = 4.56 and Kc5 = 1.65.  相似文献   

4.
In this article, we present a systematic study on IgG and Fab fragment of anti-IgG molecules using fluorescence auto- and cross-correlation spectroscopy to investigate their diffusion characteristics, binding kinetics, and the effect of small organic molecule, urea on their binding. Through our analysis, we found that the diffusion coefficient for IgG and Fab fragment of anti-IgG molecules were 37 ± 2 μm2 s−1 and 56 ± 2 μm2 s−1, respectively. From the binding kinetics study, the respective forward (ka) and backward (kd) reaction rates were (5.25 ± 0.25) × 106 M−1 s−1 and 0.08 ± 0.005 s−1, respectively and the corresponding dissociation binding constant (KD) was 15 ± 2 nM. We also found that urea inhibits the binding of these molecules at 4 M concentration due to denaturation.  相似文献   

5.
Abelson tyrosine-protein kinase 1 (ABL1) catalysed phosphorylation involves the addition of a phosphate group from ATP to the tyrosine residue on the substrate abltide. The phosphorylation reactions were carried out by incubating ABL1, ATP and the substrate abltide. Adsorption at the glassy carbon electrode surface in either reaction mixtures or control solutions, followed by differential pulse voltammetry in buffer allowed detection of the variation of abltide tyrosine residue oxidation peak reflecting the occurrence of the phosphorylation reaction. The effect of abltide, ATP and ABL1 concentrations as well as the time course of the phosphorylation reaction were studied. The influence of co-adsorption of ABL1, ATP and phosphorylated abltide was evaluated and the conditions for the electrochemical detection of ABL1-catalysed phosphorylation optimised. The Michaelis–Menten constant for abltide binding KM ∼ 4.5 μM, turnover number kcat ∼ 11 s−1 and enzyme efficiency kcat/KM ∼ 2.3 s−1 μM−1 were calculated. The inhibition of ABL1 by imatinib mesylate and danusertib was also electrochemically investigated and IC50 values of 0.53 and 0.08 μM determined.  相似文献   

6.
We determine the association constants for ligand–protein complex formation using the flow injection method. We carry out the measurements at high flow rates (F = 1 mL min−1) of a carrier phase. Therefore, determination of the association constant takes only a few minutes. Injection of 1 nM of the ligand (10 μL of 1 μM concentration of the ligand solution) is sufficient for a single measurement. This method is tested and verified for a number of complexes of selected drugs (cefaclor, etodolac, sulindac) with albumin (BSA). We obtain K = 4.45 × 103 M−1 for cefaclor, K = 1.00 × 105 M−1 for etodolac and K = 1.03 × 105 M−1 for sulindac in agreement with the literature data. We also determine the association constants of 20 newly synthesized 3β- and 3α-aminotropane derivatives with potential antipsychotic activity – ligands of 5-HT1A, 5-HT2A and D2 receptors with the albumin. Results of the studies reported here indicate that potential antipsychotic drugs bind weakly to the transporter protein (BSA) with ≈ 102–103 M−1. Our method allows measuring K in a wide range of values (102–109 M−1). This range depends only on the solubility of the ligand and sensitivity of the detector.  相似文献   

7.
A flow injection analysis (FIA) method using on-line separation and preconcentration with a novel metal scavenger beads, QuadraSil™ TA, has been developed for the ICP-OES determination of traces of palladium. QuadraSil TA contains diethylenetriamine as a functional group on spherical silica beads and shows the highest selectivity for Pd(II) at pH 1 (0.1 mol l−1 hydrochloric acid) solution. An aliquot of the sample solution prepared as 0.1 mol l−1 in hydrochloric acid was passed through the QuadraSil TA column. After washing the column with the carrier solution, the Pd(II) retained on the column was eluted with 0.05 mol l−1 thiourea solution and the eluate was directly introduced into an ICP-OES. The proposed method was successfully applied to the determination of traces of palladium in JSd-2 stream sediment certified reference material [0.019 ± 0.001 μg g−1 (n = 3); provisional value: 0.0212 μg g−1] and SRM 2556 used auto catalyst certified reference material [315 ± 4 μg g−1 (n = 4); certified value: 326 μg g−1]. The detection limit (3σ) of 0.28 ng ml−1 was obtained for 5 ml of sample solution. The sample throughputs for 5 ml and 100 μl of the sample solutions were 10 and 15 h−1, respectively.  相似文献   

8.
Dibromocarbene reacts with tertiary-butylisocyanide to form a ketenimine. The absolute rate constant of the reaction (kTBI = 2.3 × 109 M−1 s−1) was determined by laser flash photolysis techniques with UV-vis detection of the dibromocarbene-pyridine ylide. The ketenimine was detected by TRIR spectroscopy at 2040 cm−1. Isocyanide trapping of carbenes to form ketenimines is proposed as a general method of studying IR silent carbenes by TRIR spectroscopy.  相似文献   

9.
Transition metal mediated living radical polymerisation of butyl methacrylate has been demonstrated with a copper(I) halide N-alkyl-2-pyridylmethanimine ligands based catalyst. Optimum conditions were found to be with copper(I) chloride and N-octyl-2-pyridylmethanimine catalyst at 65 °C where conversions of 85% were achieved with polymers of Mn = 8900 g mol−1 (theoretical = 8400 g mol−1) and PDI = 1.23. Both non-ionic and ionic surfactants were employed which were also made by living radical polymerisation. The non-ionic surfactant was a block copolymer of PMMA from a polyethyleneglycol macroinitiator (total Mn = 7600 g mol−1, PDI = 1.20) and the ionic surfactant PDMEAMA-PMMA (total Mn = 8000 g mol−1, PDI = 1.21) with the PDMEAMA block quaternized with MeI (13.8%, 28.4%, 47.7% and 100%). A range of ligands were employed in the suspension polymerisation by varying the alkyl group on the ligand increasing the hydrophobicity (alkyl = propyl (PrMI), pentyl (PMI), octyl (OMI), dodecyl (DMI) and octadecyl (ODMI)). The more hydrophobic ligands were found to be more effective due to lower partitioning into the aqueous phase. Block copolymers of P(EMA)-P(BMA) and P(MMA)-P(BMA) were prepared by first preparing macroinitiators via living radical polymerisation (Mn = 1600 g mol−1 (PDI = 1.23) for P(EMA) and Mn = 1500 g mol−1 (PDI = 1.22) for P(MMA)) and using them for initiation of BMA in suspension polymerisation. Block copolymers had Mn between 12,800 and 13,700 g mol−1 with PDI between 1.33 and 1.54. Block copolymer growth showed excellent linear first order kinetics wrt monomer and demonstrated characteristics expected of a living radical polymerisation. Particle sizes were measured by SEM and DLS with good agreement (1.4-2.8 μm) and SEM showed spherical particles were formed.  相似文献   

10.
The influence of different parameters on the sorption profiles of trace and ultra traces of gold (I) species from the aqueous cyanide media onto the solid sorbents ion exchange polyurethane foams (IEPUFs) and commercial unloaded polyurethane foams (PUFs) based polyether type has been investigated. The retention of gold (I) species onto the investigated solid sorbents followed a first-order rate equation with an overall rate constant k in the range 2.2-2.8 ± 0.2 s−1. The sorption data of gold (I) followed Freundlich and Langmuir isotherm models. Thus, the a dual-mode of sorption mechanism involving absorption related to “weak base anion exchanger” and an added component for “surface adsorption” seems the most likely proposed dual mechanism for retention profile of gold (I) by the IEPUFs and PUFs solid sorbents. The capacity of the IEPUFs and PUFs towards gold (I) sorption calculated from the sorption isotherms was found to be 11.21 ± 1.8 and 5.29 ± 0.9 mg g−1, respectively. The chromatographic separation of the spiked inorganic gold (I) from de ionized water at concentrations 5-15 μg mL−1 onto the developed IEPUFs and PUFs packed columns at 10 mL min−1 flow rate was successfully achieved. The retained gold (I) species were then recovered quantitatively from the IEPUFs (98.4 ± 2.4%, n = 5) and PUFs (95.4 ± 3.4%, n = 5) packed columns using perchloric acid (60 mL, 1.0 mol L−1) as a proper eluating agent. Thiourea (1.0 mol L−1)-H2SO4 (0.1 mol L−1) system was also used as eluating agent for the recovery of gold (I) from IEPUFS (95.4 ± 5.4%, n = 3) and also PUFs (93.4 ± 4.4%, n = 3) packed columns. The performance of the IEPUFs and PUFs packed columns in terms of the height equivalent to the theoretical plates (HETP), number of plates (N), and critical and breakthrough capacities towards gold (I) species were evaluated. The developed IEPUFs packed column was applied successfully for complete retention and recovery (98.5 ± 2.7) of gold (III) species spiked onto tap- and industrial wastewater samples at <10 μg Au mL−1 after reduction to gold (I). The IEPUFs packed column was applied satisfactorily for complete retention and recovery (98.5 ± 2.7) of total inorganic gold (I) and/or gold (III) species spiked to tap- and industrial wastewater samples at <10 μg mL−1 gold. Chromatographic separation of gold (I) from silver (I) and base metal ions (Fe, Ni, Cu and Zn) using IEPUFS packed columns was satisfactorily achieved. The proposed method was applied successfully for the pre-concentration and separation from anodic slime and subsequent FAAS determination of analyte with satisfactory results (recoveries >95%, relative standard deviations <4.0%).  相似文献   

11.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

12.
The rate constants for the reactions of OH radicals with CF3OCHFCF3, and CF3CHFCF3 have been measured over the temperature range 250-430 K. Kinetic measurements have been carried out using the flash photolysis, and laser photolysis methods combined, respectively, with the laser induced fluorescence technique. The influence of impurities in the samples has been investigated by using gas chromatography. No sizable effect of impurities was found on the measured rate constants of these fluorinated compounds, if the purified samples were used in the measurements. The following Arrhenius expressions were determined: k(CF3OCHFCF3) = (4.39 ± 1.38) × 10−13 exp[−(1780 ± 100)/T] cm3 molecule−1 s−1, and k(CF3CHFCF3) = (6.19 ± 2.07) × 10−13 exp[−(1830 ± 100)/T] cm3 molecule−1 s−1.  相似文献   

13.
Periasamy AP  Umasankar Y  Chen SM 《Talanta》2011,83(3):930-936
A novel toluidine blue O (TBO) adsorbed alcohol dehydrogenase (ADH) biocomposite film have been prepared through simple adsorption technique with the help of electrostatic interaction between oppositely charged layers. Nafion (NF) coating was made on top of the biocomposite film modified glassy carbon electrode (GCE) to protect ADH from leaching. The fabricated ADH/TBO/NF biocomposite electrode remains highly stable in the pH range from 4 to 13. More facile electron transfer process occurs at ADH/TBO/NF biocomposite than at TBO/NF film, which is obvious from the six folds increase in ks value. Maximum surface coverage concentration (Γ) of TBO is noticed at ADH/TBO/NF film, which is 82% higher than at TBO/NF and 15% higher than at ADH/TBO film modified GCEs. Electrochemical impedance spectroscopy studies reveal that ADH has been well immobilized in the biocomposite film. Scanning electron microscopy studies confirm the discriminate surface morphology of various components present in the biocomposite film. Cyclic voltammetry studies validate that ADH/TBO/NF biocomposite film exhibits excellent electrocatalytic activity for ethanol oxidation at low over potential (Ipa = −0.14 V). The same studies show biocomposite film possesses a good sensitivity of 7.91 μA M−1 cm−2 for ethanol determination. This above sensitivity value is 17.40% higher than the sensitivity obtained for TBO/NF film (6.74 μA M−1 cm−2). Further, using differential pulse voltammetry, a sensitivity of 1.70 μA M−1 cm−2 has been achieved for ADH/TBO/NF biocomposite film.  相似文献   

14.
3,4,5,6-Tetrafluoro-2-nitrophenoxide (L) forms complexes with rare earth M3+ ions. X-ray crystal structures of substances with the stoichiometry Cs2ML5 · mEt2O (M = Er, m = 0; M = Er, m = 1; M = Y, m = 1.5; M = Yb, m = 1) have been determined. Each M3+ ion is coordinated to two bidentate and three monodentate L ions; Et2O does not coordinate to M3+. The complexes absorb both visible and ultraviolet light. The solid Er3+ and Yb3+ complexes have unusually long lifetimes (τ = 20.2 μs and 142 μs, respectively) for the decay of their luminescence in the near-infrared region following photoexcitation; this is attributed to the lack of C–H bonds and other high frequency oscillators that could cause vibrational quenching.  相似文献   

15.
Reaction of trans-[PtClMe(SMe2)2] with the mono anionic ligands azide, bromide, cyanide, iodide and thiocyanate result in substitution of the chloro ligand as the first step. In contrast the neutral ligands pyridine, 4-Me-pyridine and thiourea substitute a SMe2 ligand in the first step as confirmed by 1H NMR spectroscopy and the kinetic data. Detailed kinetic studies were performed in methanol as solvent by use of conventional stopped-flow spectrophotometry. All processes follow the usual two-term rate law for square-planar substitutions, kobs = k1 + k2[Y] (where k1 = kMeOH[MeOH]), with k1 = 0.088 ± 0.004 s−1 and k2 = 1.18 ± 0.13, 3.8 ± 0.3, 17.8 ± 1.3, 34.9 ± 1.4, 75.3 ± 1.1 mol−1 dm3 s−1 for Y = N3, Br, CN, I and SCN respectively at 298 K. The reactions with the neutral ligands proceed without an appreciable intercept with k2 = 5.1 ± 0.3, 15.3 ± 1.8 and 195 ± 3 mol−1 dm3 s−1 for Y = pyridine, 4-Me-pyridine and thiourea, respectively, at 298 K. Activation parameters for MeOH, , Br, CN, I, SCN, and Tu are ΔH = 47.1 ± 1.6, 49.8 ± 0.6, 39 ± 3, 32 ± 8, 39 ± 5, 34 ± 4 and 31 ± 3 kJ mol−1 and ΔS = −107 ± 5, −77 ± 2, −104 ± 9,−113 ± 28, −85 ± 18, −94 ± 14 and −97 ± 10 J K−1 mol−1, respectively. Recalculation of k1 to second-order units gives the following sequence of nucleophilicity: (1:13:42:57:170:200:390:840:2170) at 298 K. Variation of the leaving group in the reaction between trans-[PtXMe(SMe2)2] and SCN follows the same rate law as stated above with k2 = 75.3 ± 1.1, 236 ± 4 and 442 ± 5 mol−1 dm3 s−1 for X = Cl, I and N3, respectively, at 298 K. The corresponding activation parameters were determined as ΔH = 34 ± 4, 32 ± 2 and 39.3 ± 1.7 kJ mol−1 and ΔS = −94 ± 14, −86 ± 8 and −68 ± 6 J K−1 mol−1. All the kinetic measurements indicate the usual associate mode of activation for square planar substitution reactions as supported by large negative entropies of activation, a significant dependence of the reaction rate on different entering nucleophiles and a linear free energy relationship.  相似文献   

16.
By self-assembly in aqueous solution, calix- (CAS) and thiacalix[4]arene-p-tetrasulfonate (TCAS) formed luminescent complexes TbIII·(CAS)2 and TbIII·TCAS, respectively, which were utilized as a host for cationic guests. Addition of 1-ethylpyridinium guest quenched luminescence of TbIII·(CAS)2 in accordance with the Stern-Volmer (SV) relation with a low detection limit (D.L.) of 5.94 × 10−8 M (S/N = 3, M ≡ mol dm−3). On the other hand, 1-ethylquinolinium quenched luminescence of TbIII·TCAS most efficiently, affording a very low D.L. (6.71 × 10−10 M). The agreement of the SV coefficients obtained with luminescent intensity (KSV,all = 6.74 × 106 M−1) and lifetime (KSV,Tb = 6.50 × 106 M−1) implied that dynamic quenching of 5D4 excited state of TbIII was predominant in the quenching processes. The quenching rate was estimated to be kq,Tb = 9.94 × 109 M−1 s−1, which was as fast as diffusion-limited rate. Quenching of TbIII·(CAS)2 was also applied to detection of NAD+, with a D.L. of 2.78 × 10−7 M.  相似文献   

17.
A new method for the pretreatment of screen-printed carbon electrodes (SPCEs) by two successive steps was proposed. In step one, fresh SPCEs were soaked into NaOH with high concentration (e.g. 3 M) for tens to hundreds of minutes, and the resulted electrodes were called as SPCE-I. In step two, SPCE-I were pre-anodized in low concentration of NaOH, which were designated as SPCE-II. The pretreated electrodes showed remarkable enhancement in heterogeneous electron transfer rate constant (k0) increased from 1.6 × 10−4 cm s−1 at the fresh SPCE to 1.1 × 10−2 cm s−1 at SPCE-I for Fe(CN)63−/4− couple. The peak to peak separation (ΔEp) in cyclic voltammetry was reduced from ca. 480 to 84 mV, indicating that the electrochemical reversibility was greatly promoted, possibly due to the removing of polymers/oil binder from the electrode surfaces. The electroactive area (Aea) of the electrode was increased by a factor of 17 after pretreatment in step one. Further analysis by the electrochemical impedance method showed that the electron transfer resistance (Rct) decreased from ca. 2100 to 1.4 Ω. These pretreated electrodes, especially SPCE-II, exhibited excellent electrocatalytic behavior for the redox of dopamine (DA). Interference from ascorbic acid (AA) in the detection of DA at SPCE-II could be effectively eliminated due to the anodic peak separation (190 mV) between DA and AA, which resulted from the functionalization of the electrode surface in the pretreatment of step two. Under optimum conditions, current responses to DA were linearly changed in two concentration intervals, one was from 3.0 × 10−7 to 9.8 × 10−6 M, and the other was from 9.8 × 10−6 to 3.3 × 10−4 M. The detection limit for DA was down to 1.0 × 10−7 M.  相似文献   

18.
The compounds KZnTiF6, KZnVF6, KVScF6, KCrScF6, and KMnScF6 are fluoride analogs of Tetragonal Tungsten Bronze. M2+-M3+ ionic ordering in these fluorides provided systems which contained linear trinuclear complexes of their respective paramagnetic ions. Magnetic coupling within these linear trimers occurred below 100 K in each of the five systems. Derived magnetic susceptibility equations were fitted to observed magnetic susceptibilities for each of the possible spin systems: KZnTiF6 (S=1/2), J/k=−114 K; KZnVF6 (S=1), J/k=−39 K; KVScF6 (S=3/2), J/k=−16 K; KCrScF6 (S=2), J/k=−4 K; and KMnScF6 (S=5/2), J/k=−7.5 K.  相似文献   

19.
A simple and robust on-line sequential insertion system coupled with hydride generation atomic absorption spectrometry (HG-AAS) was developed, for selective As(III) and total inorganic arsenic determination without pre-reduction step. The proposed manifold, which is employing an integrated reaction chamber/gas-liquid separator (RC-GLS), is characterized by the ability of the successful managing of variable sample volumes (up to 25 ml), in order to achieve high sensitivity. Arsine is able to be selectively generated either from inorganic As(III) or from total arsenic, using different concentrations of HCl and NaBH4 solutions. For 8 ml sample volume consumption, the sampling frequency is 40 h−1. The detection limit is cL = 0.1 and 0.06 μg l−1 for As(III) and total arsenic, respectively. The precision (relative standard deviation) at 2.0 μg l−1 (n = 10) level is sr = 2.9 and 3.1% for As(III) and total arsenic, respectively. The performance of the proposed method was evaluated by analyzing the certified reference material NIST CRM 1643d and spiked water samples with various concentration ratios of As(III) to As(V). The method was applied for arsenic speciation in natural waters samples.  相似文献   

20.
Novel molecularly imprinted microgels incorporating arginine and tyrosine side chains as functional monomers have been designed and synthesised with percentages of cross-linker ranging from 70 to 90%. Full chemico-physical characterisation including Mr, coil density and size particle determination concluded that all polymer preparations obtained can be classified as microgels. Molecular imprinting using a phosphate template was used to generate catalytic microgels for the hydrolysis of p-nitrophenyl carbonates. Kinetic characterisation of the catalytic activity of the different preparations indicated that values of critical monomer concentration (CM) and percentage of cross-linker play an important role in determining the catalytic efficiency of the different preparations. Microgels containing 70% cross-linker were the only ones following the Michaelis-Menten saturation model and kinetic parameters were obtained using 4 mg/ml of M397: Vmax = 1.34 × 10−6 M s−1 (S.E. 1.28 × 10−7) and KM = 2.38 × 10−3 M (S.E. 3.1 × 10−4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号