首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一维负磁导率材料中的缺陷效应   总被引:15,自引:0,他引:15       下载免费PDF全文
理论和实验已经表明,金属开口谐振环(split ring resonators,简称SRR)可以实现材料的有效磁导率μeff在某一频率范围内为负.采用波导法实验研究了不同几何尺寸的六边形SRR在X波段微波作用下的近邻相互作用.实验发现,相同尺寸的六边形SRR周期性排列而成的一维负磁导率材料存在一个谐振频率;当缺陷谐振环引入一维负磁导率材料时,主谐振频率和缺陷环谐振频率同时发生移动;主谐振频率和缺陷环谐振频率的移动量随缺陷与双环谐振频率之差的增加而减小,当缺陷环谐振频率与双环谐振频率接近时,环间的相互作用增强,频率的移动量增大. 关键词: 负磁导率 缺陷效应 开口谐振环  相似文献   

2.
钟顺林  韩满贵  邓龙江 《物理学报》2011,60(11):117501-117501
研究在开口金属谐振环(SRR)结构嵌入一个电容二极管后,通过电压调控二极管的电容使得SRR结构的等效电容值发生改变,能实现对SRR的谐振频率和等效磁导率的调控,从而提出了一种智能的微波磁性超材料结构.采用时域差分有限元法(Finite-Difference Time-Domain)和恢复算法模拟了变容二极管的工作电压变化下,SRR结构谐振频率和磁导率的变化规律.研究结果表明工作电压增大使变容二极管的电容值减小时,将导致SRR结构的谐振频率向低频段移动,其磁导率的共振频率也将向低频移动.最后指出了SRR结构与常规磁性材料(如铁氧体)磁导率色散行为的不同之处. 关键词: 超材料 微波磁导率  相似文献   

3.
We demonstrate that the phase of light transmitted through double-layer subwavelength metallic slit arrays can be controlled through lateral shift of the two layers. Our samples consist of two aluminum layers, each of which contains an array of subwavelength slits. The two layers are placed in sufficient proximity to allow coupling of the evanescent fields at resonance. By changing the lateral shift between the layers from zero to half the period, the phase of the transmitted electromagnetic field is increased by pi, while the transmitted intensity remains high. Such a controllable phase delay could open new capabilities for nanophotonic devices that cannot be achieved with single-layer structures.  相似文献   

4.
孟繁义  吴群  傅佳辉  顾学迈  李乐伟 《物理学报》2008,57(10):6213-6220
以填充各向异性超常媒质矩形波导中的电磁场解为基础,通过建立与求解填充各向异性超常媒质交错结构的矩形谐振腔的谐振方程,深入研究了三维各向异性超常媒质交错结构的亚波长谐振特性.结果发现,三维各向异性超常媒质交错结构的亚波长谐振条件具有更为多样性的物理解,在固定参数下,其物理解的个数往往超过一个,还针对谐振结构的横向尺寸对亚波长谐振条件的影响进行了讨论.结果表明,随着横向尺寸的减小亚波长谐振条件的物理解数量将逐渐增多直至趋于无穷.这意味着即使超常媒质的本构参数无法控制,仍然可以通过调节谐振结构的横向尺寸来得到亚波长谐振腔. 关键词: 各向异性 超常媒质 交错结构 亚波长谐振  相似文献   

5.
Azad AK  Dai J  Zhang W 《Optics letters》2006,31(5):634-636
We present a terahertz time-domain spectroscopy study of the transmission properties of planar composite media made from subwavelength double split-ring resonators (SRRs). The measured amplitude transmission spectra reveal a resonance near 0.5 THz, the central frequency of most ultrafast terahertz systems, for one SRR orientation in normal-incidence geometry. This resonance is attributed to the effect of electric excitation of magnetic resonance of the SRR arrays. In addition, the influences of background substrate, lattice constant, and the shapes of the SRRs on the terahertz resonance are experimentally investigated and agree well with the results of recent numerical studies.  相似文献   

6.
A metamaterial slab, used as a superlens in a subwavelength imaging system, is frequently assumed homogeneous. It is the bulk properties of the metamaterial which are responsible for the resolution of the transferred information in the image domain, as a result of high transverse wave-vector coupling. However, how in a discretized metamaterial, individual meta-atoms (i.e., the meta-elements composing a negative index metamaterial slab) contribute to the imaging process is still actively studied. The main aim of this paper is to investigate the consequences of using only a few meta-atoms as a negative index slab-equivalent for subwavelength scale imaging. We make a specific choice for a meta-atom and investigate its resonant scattering patterns. We report on how knowledge of these 3D scattering patterns provides a means to understand the transfer of high spatial frequencies and assist with the design an improved negative index slab.  相似文献   

7.
新型电谐振人工异向介质抑制阵列天线单元间互耦   总被引:3,自引:0,他引:3       下载免费PDF全文
基于电谐振原理和镜像原理设计了一种周期性接地边耦合SRRs(split ring resonators)结构的新型电谐振人工异向介质,进而将该人工异向介质应用于抑制微带阵列天线元间的互耦.与传统微带阵列天线中的用于抑制互耦的电磁结构相比,该人工电磁结构不仅体积小(厚度仅为0·005λ0),而且能获得优异的阵列单元间互耦抑制性能(抑制度达16·8dB).该研究成果表明人工异向介质在高密度高性能微带天线阵列设计中具有良好的应用潜能.  相似文献   

8.
分析了由Ag和Si3N4多层纳米薄膜组成的特异材料的模式特性,使用本征模展开法(EME)结合完全匹配层(PML)边界条件模拟了该结构的亚波长成像行为,在法布里-珀罗(Fabry-Perot)条件(结构的长度是半波长的整数倍)条件下,研究发现邻近系统的点源会在另一侧成实像,这种成像基于自准直而并不是负折射.研究结果证实了金属-电介质多层膜结构可以在光波段实现近场成像.  相似文献   

9.
We report on three types of tunable dual-band metamaterial with dual negative refraction in this paper. The three types of metamaterial are composed of ferrite slabs and three different metallic resonators, including split-ring resonators (SRR), Ω-like resonators, and short wire pairs. The ferrite slabs under an applied magnetic bias provide one magnetic resonance frequency band and the three metallic resonators provide another magnetic resonance frequency band, respectively. The continuous wires within the metamaterials provide the negative permittivity in a wide frequency band covering the two magnetic resonance bands. We give the design, analysis and numerical demonstrations of three such types of metamaterial in detail. The effective electromagnetic parameters obtained from the simulated S-parameters indicate that the three types of metamaterial indeed exhibit two negative refraction passbands and the two passbands can also be shifted by changing the magnetic bias. Our results open the way to fabricate tunable dual-band metamaterial cloaks, absorbers, and antennas.  相似文献   

10.
In this paper, split-ring-based metamaterial sheets are designed for the purpose of achieving far-field subwavelength focusing, with the aid of a time-reversal technique. The metamaterial sheets are inserted into a subwavelength array consist- ing of four element antennas, with the element spacing being as small as 1/15 of a wavelength. Experiments are performed to investigate the effect of the metamaterial sheets on the focusing resolution. The results demonstrate that in the presence of the metamaterial sheets, the subwavelength array exhibits the ability to achieve super-resolution focusing, while there is no super-resolution focusing without the metamaterial sheets. Further investigation shows that the metamaterial sheets are contributive to achieving super-resolution by weakening the cross-correlations of the channel impulse responses between the array elements.  相似文献   

11.
Lenses made of negative index materials have the ability to focus the propagating and evanescent components of electromagnetic waves. Such a possibility enables super resolution, in turn resulting in sharper, subwavelength size images. In this present work, we present subwavelength imaging that was obtained from a one-dimensional left-handed metamaterial (LHM) composed of alternating layers of split-ring resonators and thin wires. We investigated the effect of the thickness of LHM lenses on image size. The left-handed pass band within the negative permittivity and permeability region is shown experimentally and theoretically for different thicknesses of LHM slabs. We also studied the transmission-phase of LHMs with a different number of unit cells along the propagation direction. The phase decreases with the increasing thicknesses of LHM slabs, proving that the phase velocity is negative in the left-handed transmission band. PACS 42.25.-p; 41.20.Jb; 81.05.-t  相似文献   

12.
Measurements of engineered subwavelength microstructures can be designed to have positive or negative and μ at desired frequencies. We present transmission measurements of a metamaterial consisting of split ring resonators (SRR). Results for different polarizations and propagation directions are presented. The transmission shows a dip even for propagations perpendicular to the SRR plane, provided that the incident electric field is parallel to the sides of the split ring resonators (SRRs) which contain the cuts. The experimental results agree well with the theoretical calculations.  相似文献   

13.
We report that it is possible to obtain a cavity structure by the deformation of a unit cell of an split ring resonator (SRR) structure. We presented the Q-factor of the cavity resonance as 192 for an SRR-based single cavity. Subsequently, we brought two and three cavities together with an intercavity distance of two metamaterial unit cells and investigated the transmission spectrum of SRR-based interacting 2-cavity and 3-cavity systems. The splitting of eigenmodes due to the interaction between the localized electromagnetic cavity modes was observed. Eventually, in taking full advantage of the effective medium theory, we modeled SRR-based cavities as 1D Fabry–Perot reflectors (FPRs) with a subwavelength cavity at the center. Finally, we observed that at the cavity resonance, the effective group velocity was reduced by a factor of 67 for an SRR-based single cavity compared to the electromagnetic waves propagating in free space.  相似文献   

14.
We report true left-handed (LH) behavior in a composite metamaterial consisting of a periodically arranged split ring resonator (SRR) and wire structures. We demonstrate the magnetic resonance of the SRR structure by comparing the transmission spectra of SRRs with those of closed SRRs. We have confirmed experimentally that the effective plasma frequency of the LH material composed of SRRs and wires is lower than the plasma frequency of the wires. A well-defined LH transmission band with a peak value of -1.2 dB (-0.3 dB/cm) was obtained. The experimental results agree extremely well with the theoretical calculations.  相似文献   

15.
Many researching efforts have been reported to seek various fundamental LC resonance structures, recently. But still the Split Ring Resonator (SRR) is the most famous and major fundamental LC-resonance structure used in the metamaterial. We employed SRR structure as the fundamental LC-resonance mechanism to fabricate photonic crystal with periodic arrangement of two different metamaterial areas composed from SRR arrays on the dielectric substrate. We developed Photonic Metamaterial Crystal (PMC) to realize the more advanced and versatile functions of the metamaterial by 1 dimensional or 2 dimensional periodic arranging of two metamaterial sections which have different dispersion properties due to the different size of SRR structures each other. In this paper, we report the fabrication process, estimation of PMC properties and some possible future application prospects, for instance the PMC waveguide structures and nonlinear properties of PMC observed as selective LC-resonant properties in Raman mapping analysis of PMC. These are quite interesting characters of PMC and the attractive applications as the PMC devices.  相似文献   

16.
基于表面等离子体共振原理,采用石墨烯超材料设计了开口环结构,用于调制太赫兹波.增加石墨烯的费米能级,改变开口环的开口距离,叠加多层石墨烯以增强石墨烯超材料的共振强度,进而增强太赫兹波调制,调制频率范围包括低频段和高频段.由于石墨烯费米能级的可调谐性,单层结构在高低两个频段的调制深度分别为81%和68%,多层结构在高低两个频段的调制深度分别增加到93%和95%,为动态调制提供了可能.该设计为调制器、吸收体等太赫兹器件的设计提供了指导和借鉴.  相似文献   

17.
水下成像技术在诸多领域获得了越来越多的应用,然而由于受到成像器件参数、水体特性等成像系统参数的影响,水下图像的分辨率普遍较低、像质较差。基于包括点扩散函数、衍射极限等水下成像系统模型的图像超分辨率重建技术,能够在提高图像分辨率的同时增强图像质量。为了尽可能提高图像分辨率,建立了基于光束传播理论的超分辨率成像模型,并将其应用于水下脉冲激光距离选通成像结果图像的超分辨率重构。重构实验的结果表明,所提出的方法可以有效地提高水下成像的分辨率和质量。  相似文献   

18.
A low losses broadband planar negative refractive index metamaterial based on split-ring resonator (SRR) pairs is proposed and investigated experimentally and numerically at microwave frequency range. The transmission spectra of the single-layer SRR pairs were measured, and exhibited left-handed (LH) transmission passband clearly. The metal-dielectric-metal structure exhibits strong magnetic and electric responses simultaneously, and leads to negative permeability and negative permittivity. To further verify the LH properties of planer structure metamaterials, effect media parameters were retrieved, a refraction phenomenon based on a wedge-shaped model and negative phase advance between consecutive numbers of layers were also demonstrated.  相似文献   

19.
We present a study of the properties of metamaterial consisting of multilayered nanofilms and numerically demonstrate the subwavelength imaging effect. We find that a point source placed in the vicinity of the structure can form an image in the opposite side of the slab, even when the permittivity of metal and dielectric materials is not matched. When light is incident obliquely on the interface, the intensity of transmitted field is smaller than the one when light is incident upon the structure, and the image becomes blurred. This structure verifies that the multilayered metallodielectric structure can act as optical hyperlens.  相似文献   

20.
Enhanced transmission through a subwavelength aperture is observed at two frequency bands with employment of two split-ring-resonators (SRR) of different sizes. Each of the SRR is excited to produce resonance and the electric field energy localized in its gap and split region can be coupled into a small hole with a radius of 2.3 mm around the respective resonance frequency. The simulation results show that the energy through the small hole is increased at 5.94 GHz (r/λ 1=0.045) and 7.03 GHz (r/λ 2=0.054), where 1042-fold and 88-fold enhancements are obtained, respectively, in comparison with the case of a single isolated hole. Moreover, it is found that placing two identical SRR structures in front of the hole can realize higher enhanced transmission with respect to the case of only one SRR utilized. The electric field coupling-enhancement mechanism is well described by studying the electric field distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号