首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative experimental study of the X-ray emission in the water-window spectral region has been performed using carbon nanofibers (CNFs) of different sizes and graphite plate targets, irradiated with ultra-short (Ti:sapphire) laser pulses. More than an order of magnitude enhancement in the X-ray yield is observed from CNFs of 60-nm diameter with respect to graphite targets. The X-ray emission from CNFs of 160-nm diameter was also high. The integrated X-ray yield of these carbon-based targets scales with the laser intensity (I L) as IL ~ 1.3-1.4I_{\mathrm{L}}^{\sim 1.3-1.4} in the intensity range of 4×1016–4×1017 W/cm2. The effect of the laser pulse duration on the X-ray emission from the CNFs was also studied by varying the pulse duration from 45 fs up to 3 ps at a constant fluence of 2×104 J/cm2. The optimum laser pulse duration for maximum X-ray emission increases with the diameter of the CNFs used. The results are explained from physical considerations of heating and hydrodynamic expansion of the CNF plasma in which resonance field enhancement takes place while passing through two times the critical density. The results add to the efforts towards achieving an efficient low-cost water-window X-ray source for microscopy.  相似文献   

2.
Microdroplets of 15-μm diameter are subjected to ultra-short laser pulses of intensities up to 1015Wcm−2 to produce hot dense plasma. The hot electrons produced in the microdroplet plasma result in efficient generation of hard X-rays in the range 50–150keV at an irradiance as low as 8×1014Wcm−2. The X-ray source efficiency is estimated to be about 2 ×10−7%. A prepulse that is about 11ns ahead of the main pulse strongly influences the droplet plasma and the resulting X-ray emission. For a similar laser prepulse and intensity, no measurable hard X-ray emission is observed when the laser is focused on a solid target of similar composition and this indicates that liquid droplet targets are best suited for hard X-ray generation in laser–plasma interactions.  相似文献   

3.
Summary We studied the X-ray emission from laser plasmas produced by irradiating thick solid Fe targets with 1.064 μm Nd-laser light at intensity up to 1.2·1013 W/cm2 with 3 and 20 ns pulses. Measurements include X-ray signal dependence on energy and focusing of laser light; X-ray pin-hole pictures of the plasma; time duration of X-ray emission.  相似文献   

4.
The high transparency of carbon-containing materials in the spectral region of “carbon window” (λ  4.5–5 nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5 nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd–glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.  相似文献   

5.
The x-ray emission from slab targets of copper irradiated by Nd:glass laser (1.054 μm, 5 and 15 ns) at intensities between 1012 and 1011W/cm2 has been studied. The x-ray emissions were monitored with the help of high quantum efficiency x-ray silicon photo diodes and vacuum photo diodes, all covered with aluminium filters of different thickness. The x-ray intensity vs the laser intensity has a scaling factor of (1.2–1.92). The relative x-ray conversion efficiency follows an empirical relationship which is in close agreement with the one reported by Babonneau et al. The ion velocities were monitored using Langmuir probes placed at different angles and radial distances from the target position. The variation of the ion velocity with the laser intensity follows a scaling of the form Φ β where β ∼0.22 which is in good agreement with the reported scaling factor values. The results on the x-ray emission from Cu plasma are reported.  相似文献   

6.
X-ray resonance lines between 11 Å and 17 Å emitted from iron plasmas created by a modest KrF laser have been simulated by modifying the atomic and hydrodynamic code EHYBRID. Free–free and free–bound emission from the Si-, Al-, Mg-, Na-, Ne- and F-like ions is calculated in the simulation. In the original experiments, a KrF laser (249 nm wavelength) with focused irradiances between 1×1012 W/cm2 and 1×1015 W/cm2 was focused on iron targets. The laser pulse duration was varied between 10 ps and 20 ns. We have calculated X-ray conversion efficiencies to be, for example, 0.5% over 2 sr for 2×1013 W/cm2 and 20 ns pulse duration, in good agreement with experimental measurements. The simulation of X-ray emission is also presented for an experiment where a train of eight 7 ps KrF laser pulses is incident onto an iron target. PACS 52.50.Jm; 52.38.Ph; 52.65.Kj; 52.30.Ex; 32.30.Rj  相似文献   

7.
We have measured the energy of the directed motion of multiply charged ions produced when solid targets are exposed to low-contrast (10?3–10?2) femtosecond laser pulses with intensities 1015–1016 W cm?2. The measurements are based on the recording of spatially resolved X-ray spectra for H-and He-like oxygen ions in the target plane. Analysis of the Heβ and Lyα line profiles has revealed fractions of accelerated ions in plasma with energies from several to several tens of kiloelectronvolts. We show that using a layer of frozen nanometer-size water droplets as the targets leads to an effective absorption of laser pulses and a twofold rise in the energy (to 0.1 MeV) of He-like oxygen ions compared to the use of solid targets.  相似文献   

8.
Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ~1018 W cm?2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the synthetic spectra generated using the spectroscopic code PrismSPECT. It is observed that He-like resonance line emission occurs from the plasma region having sub-critical density, whereas K-α emission arises from the bulk solid heated to a temperature of 10 eV by the impact of hot electrons. K-α line from Be-like ions was used to estimate the hot electron temperature. A power law fit to the electron temperature showed a scaling of I 0.47 with laser intensity.  相似文献   

9.
Proton acceleration can be induced by non-equilibrium plasma developed by high-intensity laser pulses, at 1016 W/cm2, irradiating different types of thin polyethylene targets. The process of proton acceleration and directive yield emission was investigated, optimizing the laser parameters, the irradiation conditions, and the target properties. The use of 600 J pulse energy, a laser focalization inducing self-focusing effects and advanced targets with embedded nanoparticles and optimal thicknesses, has permitted to accelerate forward protons up to the energies of about 6 MeV and amount of the order of 1015 H+/pulse. High proton energy is obtained using thin foils enriched with gold nanoparticles, whereas high proton yield is obtained using targets with a thickness of about 10 μm. The plasma diagnostics using SiC semiconductor detectors in time-of-flight configuration was fundamental to monitor the optimal conditions to improve the plasma processes concerning the ion acceleration and the X-ray and relativistic electron emission.  相似文献   

10.
Soft-X-radiation in the “water-window” region (23.3–43.6 ?) mainly from carbon laser plasmas generated by subpicosecond (700 fs) 0.248-μm laser pulses is studied as a function of angle of incidence and intensity (up to 1018 W/cm2) for p-polarized laser light. Furthermore, comparison is made between plasmas generated from massive and foil targets. Numerical calculations are performed using a hydrocode coupled to X-ray line and continuum emission calculations including radiation transport. The optimized conditions to achieve maximum water-window X-ray emissivity and, in particular, carbon Lyman-α line emission are investigated. In addition, analytical scalings are presented. These theoretical results are essentially confirmed by previous experiments. It is found that at optimized conditions, picosecond or subpicosecond laser plasma X-ray sources with a power of the order of 1–10 GW in a spectral window of 1 ? could be developed. Received: 6 August 1998 / Final version: 6 August 1999 / Published online: 30 November 1999  相似文献   

11.
Results are presented from an investigation of the hard X-ray spectrum and the parameters of fast particles in experiments on the interaction of laser pulses with solid targets in the PROGRESS-P facility at laser intensities of up to 5×1018 W/cm2 on the target surface. The maximum energy of fast electrons obtained from direct measurements is found to be 8–10 MeV.  相似文献   

12.
The X-ray lines of ions in a solid target interacting with picosecond laser pulses of moderate intensity (2×1017 W/cm2) were measured on the “Neodim” laser facility. X-ray Ly α emission spectra of hydrogen-like fluorine ions were observed. Satellite lines were also observed, evidencing the presence of intense plasma oscillations. The positions and separation between the satellites allow their assignment to the intense electrostatic oscillations with an amplitude larger than 108 V/cm and a frequency of about 7× 1014 s?1 that is noticeably lower than the laser frequency ωlas~1.8×1015 s?1. It is suggested that these oscillations may be due to strong plasma turbulence caused by the development of plasma oscillations of the Bernstein-mode type under the action of a strong magnetic field generated in plasma. The experimental results are compared with the calculated spectra of multicharged ions.  相似文献   

13.
X-rays and forward ion emission from laser-generated plasma in the Target Normal Sheath Acceleration regime of different targets with 10-μm thickness, irradiated at Prague Asterix Laser System (PALS) laboratory at about 1016 W/cm2 intensity, employing a 1,315 nm-wavelength laser with a 300-ps pulse duration, are investigated. The photon and ion emissions were mainly measured using Silicon Carbide (SiC) detectors in time-of-flight configuration and X-ray streak camera imaging. The results show that the maximum proton acceleration value and the X-ray emission yield growth are proportional to the atomic number of the irradiated targets. The X-ray emission is not isotropic, with energies increasing from 1 keV for light atomic targets to about 2.5 keV for heavy atomic targets. The laser focal position significantly influences the X-ray emission from light and heavy irradiated targets, indicating the possible induction of self-focusing effects when the laser beam is focalized in front of the light target surface and of electron density enhancement for focalization inside the target.  相似文献   

14.
A continuum spectrum of X-rays, originating from the interaction of a moderate intensity nanosecond Nd:Yag laser (1064 nm, 9 ns, 30 Hz, 900 mJ, 1011 W/cm2) with metal targets producing plasma, is investigated. The photon emission intensity is particularly high when the plasma expands in a low-pressure gas. The photon energy is measured through selective thin absorber films employed in front of the solid state detector. The temperature of the hot electrons generated from the plasma, responsible for the continuum spectrum emission, is calculated from the fit of the X-ray spectrum with a Maxwellian distribution, and it is about 1–2 keV.  相似文献   

15.
Efficient low debris hard X-ray source based on multiwalled carbon nanotubes (MWNT) irradiated by intense, femtosecond laser over an intensity range of 1015–1017 W cm−2 μm2 is reported. The MWNT targets yield two orders of magnitude higher X-rays (indicating significant enhancement of laser coupling) and three orders of magnitude lower debris compared to conventional metallic targets under identical experimental conditions. The simple analytical model explains the basic experimental observations and also serves as a guide to design efficient targets to achieve low-debris laser plasma-based hard X-ray sources at low laser intensities suitable for multi-kHz operation.  相似文献   

16.
J. Jha  M. Krishnamurthy 《Pramana》2010,75(6):1181-1189
Doping of cluster-based targets can bring out considerable modifications in the evolution of the nanoplasma formed from clusters in intense laser fields. The consequence could be either an increase or, a decrease (depending upon the properties and proportion of the dopant) in the emission of the resulting charge particles or photons from nanoplasma. As we can control the percentage of CS2 in the doped Ar-CS2 cluster, we can have argon-doped CS2 cluster (when argon constitutes about 10–40%) and CS2-doped argon cluster (when fraction of CS2 is 10–40%). In the experimental studies of electron spectra and X-ray emission from pristine Ar n (n ≤ 25, 000) and doped Ar-CS2 clusters at laser intensities of about 1015 W cm?2, it is observed that there is more than an order of magnitude enhancement in those emissions in doped Ar-CS2 clusters than in the former case. Conversely, a significant reduction in those emissions was found in the latter case. Such observations signify the importance of characterization of these targets. In this direction, we demonstrate a simple method for the characterization of doping level based on the Rayleigh scattering measurements.  相似文献   

17.
Hard Cu Kα X-ray radiation was generated with a millijoule and high-repetition-rate Ti: sapphire laser in air, helium or vacuum (2.7–1.3×104 Pa) ambient. The characteristic X-ray was obtained by focusing the 0.06–1.46 mJ/pulse, 100 fs, 1 kHz repetition femtosecond laser onto a solid copper target to a spot 4.8 μm in diameter. The relationship between Kα X-ray conversion efficiency and atmospheric conditions was explained with a simple electron collision model that suggested that the electron mean free path is an important parameter in the generation of ultrafast pulsed X-rays in any ambient condition. We also demonstrated a high-intensity X-ray source working in helium at atmospheric pressure.  相似文献   

18.
VUV emission spectra of plasmas produced by focusing laser radiation with intensity of 1010–1011 W/cm2 on carbon and aluminum targets were studied. Using the partial local thermodynamic equilibrium model for an electron density exceeding 1017 cm?3, the spectroscopic diagnostics and the analysis of ion composition of plasmas were carried out. The electron temperatures determined for carbon and aluminum plasmas from the ratio of intensities of ionic lines were found to be 8±3 eV and 11±4 eV, respectively. Stark broadening of aluminum lines was measured and parameters of electron broadening were determined. Using the spatially resolved measurement of Stark line broadening, the spatial density distribution and the law of electron gas expansion were found. The electron gas in the hot region of size 5 mm with an average density of (5±2) 1017cm ?3 experienced one-dimensional expansion according to the law 1/z 1.1 with increasing distance z from the target.  相似文献   

19.
We characterize the spectral properties of X-rays generated from selected metal and semiconductor targets when 120-fs laser pulses are focused to intensities of∼1014–3×1015 W/cm2 during laser micromachining in air. High fluxes of multi-keV-energy X-rays could be obtained with 280-μJ pulses at a 1 kHz repetition rate. The yield and spectral composition of the X-rays are found to depend sensitively on the processing conditions, and thus the X-ray emission is expected to be a novel indicator of optimal laser machining. Received: 17 July 2000 / Accepted: 27 October 2000 / Published online: 28 February 2001  相似文献   

20.
High conversion efficiency of laser energy into X-rays from a laser irradiated target is of great interest for a variety of dynamical (pulsed) studies, e.g.: radiography of laser-imploded targets, structure determination by diffraction and absorption fine-structure, and X-ray laser pumping. We report here on a frequency tripled Nd : glass laser used to irradiate targets of various materials at ~5 x 1014W/cm2. We find conversion efficiencies of between 1% and 0.1% (with respect to the incident laser energy) for individual X-ray lines between 1.8 and 7.8 keV. These efficiencies are more than an order of magnitude higher than whose achieved with 1.06 μm lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号