首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Classical molecular dynamics simulations are used to examine the growth of SrO and TiO2 thin films on SrTiO3 (STO). In particular, the simulations consider the deposition of SrO and TiO2 molecules at incident energies of 0.1, 0.5, and 1.0 eV/atom onto the (0 0 1) surface of STO. The role of surface termination layer (SrO vs. TiO2) is analyzed. In the case of SrO deposition, smooth, ordered films are produced for all incident energies considered and for both surface terminations. By contrast, in the case of TiO2 deposition, three-dimensional islands are formed under all conditions. These predictions are in good agreement with experimental data. Importantly, the simulations explain why these differing morphologies are produced for SrO and TiO2 deposition.  相似文献   

2.
First-principles calculations based on density functional theory (DFT) have been performed to investigate the adsorption of O2 on the CaO and SrO (1 0 0) surfaces. The present results indicate that the bridge-top site for both the CaO and SrO (1 0 0) surfaces is the most favorable site for O2 adsorption, with predicted adsorption energies of 1.437 eV and 1.236 eV, respectively. Detailed analysis of density of states, Mullikan population and vibration frequency are performed. The calculated results imply the possible formation of a peroxo (O22−) when O2 is adsorbed with the bridge-top mode on both CaO and SrO (1 0 0) surfaces.  相似文献   

3.
Growth of epitaxial SrTiO3 (STO) films has been examined on H-terminated Si(1 1 1) with SrO buffer layers. The epitaxial SrO buffer layers have reduced stress on H-terminated Si substrates. On the SrO buffer layers, the STO films grow epitaxially with triple domains at low temperature. Each STO domain has equivalent epitaxial relationship to SrO buffer layers, STO(1 1 0)∥SrO(1 1 1) and .  相似文献   

4.
The formation of ordered Sr overlayers on Si(1 0 0) by Atomic Layer Deposition (ALD) from bis(triisopropylcyclopentadienyl) Strontium (Sr(C5iPr3H2)2) and H2O has been investigated. SrO overlayers were deposited on a 1-2 nm SiO2/Si(1 0 0) substrate, followed by a deoxidation process to remove the SiO2 layer at high temperatures. Auger electron spectroscopy, Rutherford backscattering spectrometry, spectroscopic ellipsometry, and low-energy electron diffraction were used to investigate the progress of both ALD and deoxidation processes. Results show that an ordered Sr/Si(1 0 0) surface with 2 × 1 pattern can be obtained after depositing several monolayers of SrO on Si using ALD followed by an anneal at 800-850 °C. The (2 × 1) ordered Sr/Si(1 0 0) surface is known to be an excellent template for the epitaxial growth of SrTiO3 (STO) oxide. The present results demonstrate that ALD is a potential alternative to molecular beam epitaxy methods for the fabrication of epitaxial oxides on semiconductor substrates.  相似文献   

5.
The surface energies for 24 surfaces of all bcc transition metals Fe, Cr, Mo, W, V, Nb and Ta have been calculated by using the second nearest-neighbor modified embedded atom method. The results show that, for all bcc transition metals, the order among three low-index surface energies E(1 1 0) < E(1 0 0) < E(1 1 1) is in agreement with experimental results and E(1 1 0) is also the lowest surface energy for various surfaces. So that from surface energy minimization, the (1 1 0) texture should be favorable in the bcc films. This is also consistent with experimental results. The surface energy for the other surfaces increases linearly with increasing angle between the surfaces (h k l) and (1 1 0). Therefore, a deviation of a surface orientation from (1 1 0) can be used to estimate the relative values of the surface energy.  相似文献   

6.
XPS and LEED have been used to characterize the interaction of sputter-deposited Pt (maximum coverage <5 ML) with Nb-doped SrTiO3(0 0 1) surfaces prepared either by annealing in O2 and then UHV, or by chemical-etching in aqua regia. The annealed surface exhibits an ordered (1 × 1) LEED pattern, with additional diffraction spots and streaks indicating the presence of oxygen vacancies. Increasing Pt coverage results in the decrease of the observed Pt(4f7/2) binding energy and the uniform shift of the Sr(3d), Ti(2p) and O(1s) levels to smaller binding energies, as expected for Pt cluster growth and surface-to-Pt charge donation on an n-type semiconductor. The etched surface is disordered, and exhibits a hydroxylated surface with a contaminant C film of ∼23 ? average thickness. Pt deposition on the etched surface results in an immediate decrease in the intensity of the OH feature in the O(1s) spectrum, and a uniform shift of the Sr(3d), Ti(2p) and O(1s) levels to larger binding energies with increasing Pt coverage. The observed Pt(4f7/2) binding energy on the etched surface (∼72 eV) is independent of Pt coverage, and indicates substantial electronic charge donation from the Pt to surface hydroxyl species. The observation of band bending towards higher binding energies upon Pt deposition (behavior normally associated with p-type semiconductors) demonstrates that sub-monolayer quantities of adsorbates can alter metal/oxide interfacial charge transfer and reverse the direction of band bending, with important consequences for Schottky barrier heights and device applications.  相似文献   

7.
We performed density functional theory calculations using the full-potential linearized augmented plane wave method and generalized gradient approximation to investigate the interaction of hydrogen with Fe surface layers in the Fe/M(0 0 1) system, where M=Cu, Ag. The adsorption of hydrogen is found to be preferable at bridge sites in both H/Fe(0 0 1) and H/Fe/Ag(0 0 1), whereas the preferred sites are the fourfold site above the surface layer in the H/Fe/Cu(0 0 1) system. The adsorption energies are enhanced due to Cu and Ag substrates as compared to Fe(0 0 1) substrates. The local density of states at the Fermi level and the magnetic moments are reduced due to the presence of H for the different systems.  相似文献   

8.
9.
We analyze the basic structural units of simple reconstructions of the (1 1 1) surface of SrTiO3 using density functional calculations. The prime focus is to answer three questions: what is the most appropriate functional to use; how accurate are the energies; what are the dominant low-energy structures and where do they lie on the surface phase diagram. Using test calculations of representative small molecules we compare conventional PBE-GGA with higher-order methods such as the TPSS meta-GGA and on-site hybrid methods PBE0 and TPSSh, the later being the most accurate. There are large effects due to reduction of the metal d oxygen sp hybridization when using the hybrid methods which are equivalent to a dynamical GGA + U, which leads to rather substantial improvements in the atomization energies of simple calibration molecules, even though the d-electron density for titanium compounds is rather small. By comparing the errors of the different methods we are able to generate an estimate of the theoretical error, which is about 0.25 eV per 1 × 1 unit cell, with changes of 0.5-1.0 eV per 1 × 1 cell with the more accurate method relative to conventional GGA. An analysis of the plausible structures reveals a new low-energy TiO2-rich configuration with octahedral co-ordination. This structure can act as a template for layers of either TiO or Ti2O3, consistent with experimental results. The results also suggest that both the fracture surface and the stoichiometric SrTiO3(1 1 1) surface should spontaneously disproportionate into SrO and TiO2 rich domains.  相似文献   

10.
The DOS structures of NiO (0 0 1;1 1 1) surfaces and CO adsorption on these surfaces have been studied with spin-unrestricted and periodic DFT (B3LYP) methods. On the basis of the analysis of orbital interaction on DOSs, the bonding properties of surface atomic orbitals have also been interpreted. It is found that CO adsorption on (0 0 1) and (1 1 1) surfaces have different mechanisms and adsorption energies. A four-electron σ orbital interaction is produced when CO is adsorbed on NiO (1 1 1), CO adsorbption on NiO (1 1 1) surface is obviously stronger than that on surface (0 0 1). It is easy for the clean NiO (1 1 1) surface to reconstruct to (2 × 2) structure, but the surface covered by CO does not undergo such a reconstruction.  相似文献   

11.
The empirical electron surface model (EESM) based on the empirical electron theory and the dangling bond analysis method has been used to establish a database of surface energy for low-index surfaces of fcc-metals such as Al, Mn, Co, Ni, Cu, Pd, Ag, Pt, Au, and Pb. A brief introduction of EESM will be presented in this paper. The calculated results are in agreement with experimental and other theoretical values. Comparison of the experimental results and calculation values shows that the average relative error is less than 10% and these values show a strong anisotropy. As we predicted, the surface energy of the close-packed plane (1 1 1) is the lowest one of all index surfaces. For low-index planes, the order of the surface energies is γ(1 1 1) < γ(1 0 0) < γ(1 1 0) < γ(2 1 0). It is also found that the dangling bond electron density and the spatial distribution of covalent bonds have a great influence on surface energy of various index surfaces.  相似文献   

12.
We use first-principles density functional theory-based calculations in the analysis of the interaction of H2O with (1 0 0), (1 1 0) and (1 1 1) surfaces of TiN, and develop understanding in terms of surface energies, polarity of the surface and chemistry of the cation, through comparison with H2O adsorption on ZrN. While water molecule physisorbs preferentially at Ti site of (1 0 0) and (1 1 1) surfaces, it adsorbs dissociatively on (1 1 0) surface of TiN with binding stronger than almost 1.32 eV/molecule. Our analysis reveals the following general trends: (a) surfaces with higher energies typically lead to stronger adsorption, (b) dissociative adsorption of H2O necessarily occurs on a charge neutral high energy surface and (c) lower symmetry of the (1 1 0) plane results in many configurations of comparable stability, as opposed to the higher symmetry (1 0 0) and (1 1 1) surfaces, which also consistently explain the results of H2O adsorption on MgO available in literature. Finally, weaker adsorption of H2O on TiN than on ZrN can be rationalized in terms of greater chemical stability of Ti arising from its ability to be in mixed valence.  相似文献   

13.
Density functional theory (DFT) with LDA and GGA have been employed to study the interface and thin film properties of NaCl on a Ge(0 0 1) surface. The atomic and electronic structures of thin NaCl films from one to ten monolayers were analyzed. The layer adsorption energies show that a quasi-crystalline (0 0 1) fcc NaCl film is built up via a layer-by-layer growth mode with NaCl thickness above 2 ML. Simulated STM images show a well-resolved (1 × 1) NaCl atomic structure for sample bias voltage Vs < −2.5 V and the bright protrusions should be assigned to the Cl ions of the NaCl film. The Ge substrate dimer is reserved and buckled like a clean Ge(0 0 1)-p(2 × 2) surface as the result of weak interface interaction between the dangling bonds coming from valence π states of the Ge substrate and the 3p states of the interfacial Cl ion. These results are consistent with the experiments of STM, LEED and EELS.  相似文献   

14.
The electronic structures of Ni, Pd, Pt, Cu, and Zn atoms adsorbed on the perfect MgO(1 0 0) surface and on a surface oxygen vacancy have been studied at the DFT/B3LYP level of theory using both the bare cluster and embedded cluster models. Ni, Pd, Pt, and Cu atoms can form stable adsorption complexes on the regular O site of the perfect MgO(1 0 0) surface with the binding energies of 19.0, 25.2, 46.7, and 17.3 kcal/mol, respectively, despite very little electron transfer between the surface and the metal atoms. On the other hand, adsorptions of Ni, Pd, Pt, and Cu atoms show strong interaction with an oxygen vacancy on the MgO(1 0 0) surface by transferring a significant number of electron charges from the vacancy to the adsorbed metal atoms and thus forming ionic bonds with the vacancy site. These interactions on the vacancy site for Ni, Pd, Pt, and Cu atoms increase the binding energies by 25.8, 59.7, 85.2, and 19.1 kcal/mol, respectively, compared to those on the perfect surface. Zn atom interacts very weakly with the perfect surface as well as the surface oxygen vacancy. We observed that the interaction increases from Ni to Pt in the same group and decreases from Ni to Zn in the same transition metal period in both perfect and vacancy systems. These relationships correlate well with the degrees of electron transfer from the surface to the adsorbed metal atom. The changes in the ionization potentials of the surface also correlate with the adsorption energies or degrees of electron transfers. Madelung potential is found to have significant effects on the electronic properties of metal atom adsorptions on the MgO(1 0 0) surface as well as on an oxygen vacancy, though it is more so for the latter. Furthermore, the Madelung potential facilitates electron transfer from the surface to the adsorbed metal atoms but not in the other direction.  相似文献   

15.
Ti/GaN interface formation on GaN(0 0 0 1)-(1 × 1) surface has been investigated by means of resonant photoelectron spectroscopy (for photon energies near to Ti 3p → 3d excitation). The sets of photoelectron energy distribution curves were recorded for in situ prepared clean GaN surface and as a function of Ti coverage followed by post-deposition annealing. Manifestations of chemical reactions at the Ti/GaN interface were revealed in the valence band spectra as well as in the Ga 3d core level peak—the discerned contribution of Ti 3d states to the valence band turned out to be similar to that reported in the literature for titanium nitride. The interaction between Ti and N was further enhanced by post-deposition annealing. The study was complemented with SIMS and AFM measurements.  相似文献   

16.
Yuan Xu Wang  Masao Arai 《Surface science》2007,601(18):4092-4096
Density functional calculations have been used to investigate the (0 0 1) surface of cubic SrZrO3 with both SrO and ZrO2 termination. Surface structure and electronic structure have been obtained. The SrO surface is found to be similar to its counterpart in SrTiO3, while there are marked differences between the ZrO2 and TiO2 terminations in SrZrO3 and SrTiO3, respectively, concerning surface relaxation and rumpling. For the ZrO2-terminated surface of SrZrO3, the covalency of the interaction between the outmost Zr and the O beneath is enhanced as a result of their bond contraction. The band gap reduction and the presence of the surface states are also discussed in relation with the behavior of the electrostatic potential.  相似文献   

17.
Hydrated starch alone and in composition with nanosilica A-300 and quercetin (natural antioxidant) was studied in the form of powders (mechanical mixture) and gels using 1H NMR (at 200-280 K), FTIR (293 K), TG (293-573 K), TSDC (90-265 K) and quantum chemistry methods. Influence of weakly polar (chloroform-d, CDCl3) and polar ((CD3)2SO, DMSO) deuterated solvents on bound water structure in these systems was also analysed at 200-280 K. The energetic and structural boundaries between weakly (unfrozen at 250-260 < T < 273 K) and strongly (unfrozen at 200 < T < 250-260 K) bound waters become nonabrupt after the addition of these solvents to quercetin/starch/nanosilica composites because of the differences in water interaction with these substances differently affecting its freezing point depression.  相似文献   

18.
The adsorption of benzotriazole (BTAH or C6N3H5) on a Cu(1 1 1) surface is investigated by using first principle density functional theory calculations (VASP). It is found that BTAH can be physisorbed (<0.1 eV) or weakly chemisorbed (∼0.43 eV) onto Cu(1 1 1), and the chemical bond is formed through nitrogen sp2 lone pairs. The weak chemisorption can be stabilized by reaction with neighboring protonphilic radicals, like OH. Furthermore, the geometries and associated energies of intermolecular hydrogen bonds between adsorbates on Cu(1 1 1) are also calculated. A model of the first layer of BTAH/BTA on Cu(1 1 1) surface is developed based on a hydrogen bond network structure.  相似文献   

19.
We performed high-resolution photoemission experiments at different photon energies to investigate the valence band structure of 1 ML of 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA) on Ag(1 1 1). Besides the known occupied molecular orbitals HOMO and HOMO − 1 we observe a new state close to the Fermi level, which results from the interaction between NTCDA and the substrate, partially filling the lowest unoccupied orbital of the free molecule (LUMO) in the monolayer system. By tuning the photon energy through the carbon K-edge, a resonance like change of the spectral intensity at the HOMO and HOMO − 1 energies is clearly revealed, which we use for an assignment of the individual spectral features to a predominant localization either at the naphthalene core or the anhydride group.  相似文献   

20.
Q. Liu 《Applied Surface Science》2008,254(21):7104-7108
Dispersive calcite (CaCO3) nano-particles with a primary particle size of about 100 nm and an average agglomerate size of about 2.8 μm were synthesized via carbonation in the presence of poly acrylic acid (PAA). The experimental results showed that PAA was liable to be adsorbed on the calcite surface, leading to the decrease of the agglomeration size from 8.7 μm to 2.8 μm and the zeta potential from −8.5 mV to −28.6 mV. The deformation and adsorption behaviors of PAA on the typical planes of calcite were studied by the molecular simulation method, using DISCOVER model and the COMPASS force field. The simulation results indicated that PAA was easy to be deformed and adsorbed on the calcite planes owing to mainly the coulomb interaction as well as the possible formation of CaO and hydrogen bonds between PAA and calcite. The adsorption tendency of PAA on the CaCO3 planes was as follows based on the values of the corresponding interaction energies: (2 0 2) > (1 1 6) > (1 1 3) > (0 1 8) > (1 1 0) > (1 0 4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号