首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Wurtzite zinc oxides films (ZnO) were deposited on silicon (0 0 1) and corning glass substrates using the pulsed laser deposition technique. The laser fluence, target-substrate distance, substrate temperature of 300 °C were fixed while varying oxygen pressures from 2 to 500 Pa were used. It is observed that the structural properties of ZnO films depend strongly on the oxygen pressure and the substrate nature. The film crystallinity improves with decreasing oxygen pressure. At high oxygen pressure, the films are randomly oriented, whereas, at low oxygen pressures they are well oriented along [0 0 1] axis for Si substrates and along [1 0 3] axis for glass substrates. A honeycomb structure is obtained at low oxygen pressures, whereas microcrystalline structures were obtained at high oxygen pressures. The effect of oxygen pressure on film transparency, band gap Eg and Urbach energies was investigated.  相似文献   

2.
Ta2O5 films were deposited on BK7 substrates by e-beam evaporation with different deposition parameters such as substrate temperature (323-623 K), oxygen pressure (0.5-3.0×10−2 Pa) and deposition rate (0.2-0.5 nm/s). Absorption, scattering and chemical composition were investigated by surface thermal lensing (STL) technique, total integrated scattering (TIS) measurement and X-ray photoelectron spectroscopy (XPS), respectively. The laser-induced damage threshold (LIDT) was assessed using pulsed Nd:YAG 1064 nm laser at a pulse length of 12 ns. The results showed that optical properties, absorption and LIDT were influenced by the deposition parameters and annealing. However, scattering was little correlated with the deposition parameters. On the whole, the LIDT increased with increasing substrate temperature and oxygen pressure, whereas it increased firstly and then decreased upon increasing deposition rate. After annealing at 673 K for 12 h, the LIDT of films improved significantly. The dependence of possible damage mechanism on deposition parameters was discussed.  相似文献   

3.
The paper presents the fabrication and characterization of La0.65Sr0.35MnO3−δ (LSMO) polycrystalline thin films deposited directly on Si (1 0 0) substrates using pulsed laser deposition technique. Various deposition parameters like substrate temperature and oxygen partial pressure have been varied systematically to obtain stoichiometric, crack-free films with smooth surface morphology having nearly monodisperse grain size distribution. The substrate temperature variation from 600 to 800 °C had profound effects on the microstructure and topography of the deposited film, with optimum result being obtained at 700 °C. The variation of partial pressure of oxygen controls the deposition kinetics as well as the stoichiometry of the film in terms of oxygen vacancy, which influences the magnetic and electrical transport properties of the manganate films. The microstructure and crystallinity of the deposited films have been studied using X-ray diffraction, scanning electron microscopy and atomic force microscopy. A correlation between the oxygen stoichiometry and micro-structural and transport properties of the deposited films has been obtained.  相似文献   

4.
We report on the effects of substrate, ambient oxygen pressure and deposition time on the crystal structure, and morphology of Sm0.55Nd0.45NiO3 solid solution nanostructured films synthesized by pulsed-laser deposition. In each film the structure was found to be consistent with a perovskite structure with preferential planes growth and reveals a strong orientation along the orthorhombic (2 1 0) plane of the perovskite subcell for the film deposited on NdGaO3 where highly crystalline films were obtained within 15 min deposition time with a low surface roughness of 8.79 nm. Similar structure is observed on Si (1 0 0) substrate only at O2 pressure of 0.4 mbar. The surface morphology of the different samples shows a net dense film structure with several droplets population. The nano-scaled droplets are in general spherical in shape; a detailed analysis indicates that the laser ablation of this nickelate family is governed to a certain extent by a heat transfer phenomenon.  相似文献   

5.
dc reactive magnetron sputtering technique was employed for deposition of tantalum oxide films on quartz and silicon substrates by sputtering of pure tantalum target in the presence of oxygen and argon gases under various substrate temperatures in the range 303-973 K. The variation of cathode potential with the oxygen partial pressure was systematically studied. The influence of substrate temperature on the chemical binding configuration, crystal structure and optical properties was investigated. X-ray photoelectron spectroscopic studies indicated that the films formed at oxygen partial pressures ≥1 × 10−4 mbar were stoichiometric. The Fourier transform infrared spectroscopic studies revealed that the films formed up to substrate temperatures <673 K showed a broad absorption band at 750-1000 cm−1 and a sharp band at 630 cm−1 indicated the presence of amorphous phase while at higher substrate temperatures the appearance of bands at about 810 and 510 cm−1 revealed the polycrystalline nature. The effect of substrate temperature on the electrical characteristics of Al/Ta2O5/Si structure was investigated. The dielectric constant values were in the range 17-29 in the substrate temperature range of 303-973 K. The current-voltage characteristics showed modified Poole-Frenkel conduction mechanism with a tendency for reduction of the compensation level. The optical band gap of the films decreased from 4.44 to 4.25 eV and the refractive index increased from 1.89 to 2.25 with the increase of substrate temperature from 303 to 973 K.  相似文献   

6.
WO3 nanoparticles were prepared by evaporating tungsten filament under a low pressure of oxygen gas, namely, by a gas evaporation method. The crystal structure, morphology, and NO2 gas sensing properties of WO3 nanoparticles deposited under various oxygen pressures and annealed at different temperatures were investigated. The particles obtained were identified as monoclinic WO3. The particle size increased with increasing oxygen pressure and with increasing annealing temperature. The sensitivity increased with decreasing particle size, irrespective of the oxygen pressure during deposition and annealing temperature. The highest sensitivity of 4700 to NO2 at 1 ppm observed in this study was measured at a relatively low operating temperature of 50 °C; this sensitivity was observed for a sensor made of particles as small as 36 nm.  相似文献   

7.
Yttrium oxide thin films were deposited on Si (1 1 1) and quartz substrates by pulsed laser deposition technique at different substrate temperature and oxygen partial pressure. XRD analysis shows that crystallite size of the yttrium oxide thin films increases as the substrate temperature increases from 300 to 873 K. However the films deposited at constant substrate temperature with variable oxygen partial pressure show opposite effect on the crystallite size. Band gap energies determined from UV-visible spectroscopy indicated higher values than that of the reported bulk value.  相似文献   

8.
TiO2 has attracted a lot of attention due to its photocatalytic properties and its potential applications in environmental purification and self cleaning coatings, as well as for its high optical transmittance in the visible-IR spectral range, high chemical stability and mechanical resistance. In this paper, we report on the growth of TiO2 nanocrystalline films on Si (1 0 0) substrates by pulsed laser deposition (PLD). Rutile sintered targets were irradiated by KrF excimer laser (λ = 248 nm, pulse duration ∼30 ns) in a controlled oxygen environment and at constant substrate temperature of 650 °C. The structural and morphological properties of the films have been studied for different deposition parameters, such as oxygen partial pressure (0.05-5 Pa) and laser fluence (2- 4 J/cm2). X-ray diffraction (XRD) shows the formation of both rutile and anatase phases; however, it is observed that the anatase phase is suppressed at the highest laser fluences. X-ray photoelectron spectroscopy (XPS) measurements were performed to determine the stoichiometry of the grown films. The surface morphology of the deposits, studied by scanning electron (SEM) and atomic force (AFM) microscopies, has revealed nanostructured films. The dimensions and density of the nanoparticles observed at the surface depend on the partial pressure of oxygen during growth. The smallest particles of about 40 nm diameter were obtained for the highest pressures of inlet gas.  相似文献   

9.
Polycrystalline magnetite films were grown by pulsed laser deposition from an α-Fe2O3 target at 450 °C. X-ray diffraction analysis showed the presence of a single-phase spinel film with preferred orientation when the deposition was performed at low oxygen pressure. Mössbauer spectroscopy at both room temperature and 120 K was used to identify the hyperfine parameters of the magnetite film deposited on glass at 450 °C and at an oxygen partial pressure of 10−4 Torr.  相似文献   

10.
We have employed low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy to follow the epitaxial growth of thin films of TiO2 on W(1 0 0). The films were grown both by metal vapour deposition of titanium onto the substrate in UHV with subsequent annealing in a low partial pressure of oxygen, and by metal vapour deposition in a low partial pressure of oxygen. LEED patterns showed the characteristic patterns of (1 1 0) oriented rutile. A systematic spot splitting was observed and attributed to a stepped surface. The calculated step height was found to be in good agreement with that expected for rutile TiO2(1 1 0), 3.3 Å. Titanium core level shifts were used to identify oxidation states as a function of film thickness allowing the interpretation in terms of a slightly sub-stoichiometric interface layer in contact with the substrate. In combination with the LEED patterns, the film structure is therefore determined to be (1 1 0) oriented rutile with a comparable level of stoichiometry to UHV prepared bulk crystals. The ordered step structure indicates considerable structural complexity of the surface.  相似文献   

11.
This paper seeks to determine the optimal settings for the deposition parameters, for TiO2 thin film, prepared on non-alkali glass substrates, by direct current (dc) sputtering, using a ceramic TiO2 target in an argon gas environment. An orthogonal array, the signal-to-noise ratio and analysis of variance are used to analyze the effect of the deposition parameters. Using the Taguchi method for design of a robust experiment, the interactions between factors are also investigated. The main deposition parameters, such as dc power (W), sputtering pressure (Pa), substrate temperature (°C) and deposition time (min), were optimized, with reference to the structure and photocatalytic characteristics of TiO2. The results of this study show that substrate temperature and deposition time have the most significant effect on photocatalytic performance. For the optimal combination of deposition parameters, the (1 1 0) and (2 0 0) peaks of the rutile structure and the (2 0 0) peak of the anatase structure were observed, at 2θ ∼ 27.4°, 39.2° and 48°, respectively. The experimental results illustrate that the Taguchi method allowed a suitable solution to the problem, with the minimum number of trials, compared to a full factorial design. The adhesion of the coatings was also measured and evaluated, via a scratch test. Superior wear behavior was observed, for the TiO2 film, because of the increased strength of the interface of micro-blasted tools.  相似文献   

12.
Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 (BNKLT) thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.  相似文献   

13.
The Bi2O3-ZnO-Nb2O5 (BZN) cubic pyrochlore thin films were prepared on Pt/TiO2/SiO2/Si(1 0 0) substrates by using pulsed laser deposition process. The oxygen pressure was varied in the range of 5-50 Pa to investigate its effect on the structure and dielectric properties of BZN thin films. It is found that oxygen pressure during deposition plays an important role on structure and other properties of BZN films. The BZN films deposited at temperature of 650 °C and at O2 pressure of 5 Pa have an amorphous BZN and Nb2O5 phases but exhibits a cubic pyrochlore structure with a preferential (2 2 2) orientation when the oxygen pressure increases to 10 Pa. Dielectric constant and loss tangent of the films deposited at 10 Pa are 185 and 0.0008 at 10 kHz, respectively. The dielectric tunability is about 10% at a dc bias field of 0.9 MV/cm.  相似文献   

14.
CuFeO2 (CFO) is a delafossite-type compound and is a well known p-type semiconductor. Epitaxial CuFeO2 thin films were prepared on Al2O3 (0 0 0 1) substrates by pulsed laser deposition. The deposition, performed at 500 °C and 10 Pa leads to epitaxial phase with extremely low roughness and high density. The oxygen pressure modulates the band energy properties of Cu 2p, Fe 3p and O1s. The results show that the low deposition oxygen pressure contributes to the chemistry ingredient and magnetization properties. Furthermore, spin-glass behavior is identified and weak-ferromagnetization property is found at a low temperature about ∼5 K.  相似文献   

15.
We report on the observation of room-temperature ferromagnetism in epitaxial (Zn,Mn)O films grown by a pulsed-laser deposition technique using high-density targets. The X-ray, microscopic, spectroscopic and magnetic properties of target material containing 6 at.% of Mn and films were compared. The target shows the presence of large clusters exhibiting paramagnetic behavior. However, ferromagnetic properties were observed in (Zn,Mn)O films grown at a substrate temperature of 500 °C and with an oxygen partial pressure of 1 mTorr. Although, crystalline quality of the film improves with increasing substrate temperature, the ferromagnetism becomes weaker.  相似文献   

16.
YVO4:Sm3+ films were deposited on Al2O3 (0 0 0 1) substrates at various oxygen pressures changing from 13.3 to 46.6 Pa by using the pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The XRD pattern confirmed that YVO4:Sm3+ film has zircon structure and the AFM study revealed that the films consist of homogeneous grains ranging from 100 to 400 nm. The room temperature photoluminescence (PL) spectra showed that the emitted radiation was dominated by a reddish-orange emission peak at 602 nm radiating from the transition of (4G5/26H7/2). The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the deposition conditions, in particular, the substrate temperature. The surface roughness and photoluminescence intensity of these films showed similar behavior as a function of oxygen pressure.  相似文献   

17.
Nanocrystalline indium oxide (INO) films are deposited in a back ground oxygen pressure at 0.02 mbar on quartz substrates at different substrate temperatures (Ts) ranging from 300 to 573 K using pulsed laser deposition technique. The films are characterized using GIXRD, XPS, AFM and UV-visible spectroscopy to study the effect of substrate temperature on the structural and optical properties of films. The XRD patterns suggest that the films deposited at room temperature are amorphous in nature and the crystalline nature of the films increases with increase in substrate temperature. Films prepared at Ts ≥ 473 K are polycrystalline in nature (cubic phase). Crystalline grain size calculation based on Debye Scherrer formula indicates that the particle size enhances with the increase in substrate temperature. Lattice constant of the films are calculated from the XRD data. XPS studies suggest that all the INO films consist of both crystalline and amorphous phases. XPS results show an increase in oxygen content with increase in substrate temperature and reveals that the films deposited at higher substrate temperatures exhibit better stoichiometry. The thickness measurements using interferometric techniques show that the film thickness decreases with increase in substrate temperature. Analysis of the optical transmittance data of the films shows a blue shift in the values of optical band gap energy for the films compared to that of the bulk material owing to the quantum confinement effect due to the presence of quantum dots in the films. Refractive index and porosity of the films are also investigated. Room temperature DC electrical measurements shows that the INO films investigated are having relatively high electrical resistivity in the range of 0.80-1.90 Ωm. Low temperature electrical conductivity measurements in the temperature range of 50-300 K for the film deposited at 300 K give a linear Arrhenius plot suggesting thermally activated conduction. Surface morphology studies of the films using AFM reveal the formation of nanostructured indium oxide thin films.  相似文献   

18.
Indium tin oxide (ITO) thin films were prepared by pulsed laser deposition (PLD) on glass substrate at room temperature. Structural, optical, and electrical properties of these films were analyzed in order to investigate its dependence on oxygen pressure, and rapid thermal annealing (RTA) temperature. High quality ITO films with a low resistivity of 3.3 × 10−4 Ω cm and a transparency above 90% were able to be formed at an oxygen pressure of 2.0 Pa and an RTA temperature of 400 °C. A four-point probe method, X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-NIR grating spectrometer are used to investigate the properties of ITO films.  相似文献   

19.
ZnO films doped with Ga (GZO) of varying composition were prepared on Corning glass substrate by radio frequency magnetron sputtering at various deposition temperatures of room temperature, 150, 250 and 400 °C, and their temperature dependent photoelectric and structural properties were correlated with Ga composition. With increasing deposition temperature, the Ga content, at which the lowest electrical resistivity and the best crystallinity were observed, decreased. Films with optimal electrical resistivity of 2-3 × 10−4 Ω cm and with good crystallinity were obtained in the substrate temperature range from 150 to 250 °C, and the corresponding CGa/(CGa + CZn) atomic ratio was about 0.049. GZO films grown at room temperature had coarse columnar structure and low optical transmittance, while films deposited at 400 °C yielded the highest figure of merit (FOM) due to very low optical absorption despite rather moderate electrical resistivity slightly higher than 4 × 10−4 Ω cm. The optimum Ga content at which the maximum figure of merit was obtained decreased with increasing deposition temperature.  相似文献   

20.
Radio-frequency magnetron sputtering technique is used to deposit Ba0.65Sr0.35TiO3 (BST) thin films on fused quartz substrates. In order to prepare the high-quality BST thin films, the crystallization and microstructure of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). More intense characteristic diffraction peaks and better crystallization can be observed in BST thin films deposited at 600 °C and subsequently annealed at 700 °C. The refractive index of the films is determined from the measured transmission spectra. The dependences of the refractive index on the deposition parameters of BST thin films are different. The refractive index of the films increases with the substrate temperature. At lower sputtering pressure, the refractive index increases from 1.797 to 2.197 with pressure increase. However, when the pressure increases up to 3.9 Pa, the refractive index reduces to 1.86. The oxygen to argon ratio also plays an important effect on the refractive index of the films. It has been found that the refractive index increases with increase in the ratio of oxygen to argon. The refractive index of BST thin films is strongly dependent on the annealing temperature, which also increases as the annealing temperature ascends. In a word, the refractive index of BST thin films is finally affected by the films’ microstructure and texture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号