首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
The first-principles calculations have been presented to study the adsorption of aluminum (Al) on the Si(0 0 1)(2×1) surface. We have investigated the optimized geometries and electronic structures of the adatom-substrate system. The adsorption energy of the system has been calculated. The most stable adsorption sites were consequently determined to be HH site and T3+T4. It is shown that the Si-Si dimer is asymmetric on the reconstructed bare surface and become symmetric upon Al adsorption. In addition, the bond length of Si-Si was found to be considerably elongated in the adsorption system. It is found that the work function change obtained in our work is different from other previous results on the adsorption of alkali metals on the Si(0 0 1) surface. In order to investigate the relative stability of phases at different coverages, the surface formation energy of the adsorption system was calculated. To shed light on the nature of the Al-Si bond and the character of silicon surface, the density of states (DOS) and difference charge density of the system were evaluated.  相似文献   

2.
Initial adsorption of oxygen molecules on the Si(1 1 0)-16 × 2 surface and subsequent modification of the bonding states induced by mild (300 °C) annealing have been studied by synchrotron-radiation photoemission spectroscopy and scanning-tunneling microscopy. It has been shown that upon annealing, the intensity and the energy positions of the Si 2p suboxide components shift towards the values characteristic for the thermal oxide. This indicates the presence of a metastable chemisorption state of oxygen on the Si(1 1 0)-16 × 2 surface.  相似文献   

3.
The interactions of H and H2 with W(1 0 0)-c(2 × 2)Cu and W(1 0 0) have been investigated through density functional theory (DFT) calculations to elucidate the effect of Cu atoms on the reactivity of the alloy. Cu atoms do not alter the attraction towards top-W sites felt by H2 molecules approaching the W(1 0 0) surface but make dissociation more difficult due to the rise of late activation barriers. This is mainly due to the strong decrease in the stability of the atomic adsorbed state on bridge sites, the most favourable ones for H adsorption on W(1 0 0). Still, our results show unambiguously that H2 dissociative adsorption on perfect terraces of the W(1 0 0)-c(2 × 2)Cu surface is a non-activated process which is consistent with the high sticking probability found in molecular beam experiments at low energies.  相似文献   

4.
We report first principles calculations to analyze the ruthenium adsorption and diffusion on GaN(0 0 0 1) surface in a 2×2geometry. The calculations were performed using the generalized gradient approximation (GGA) with ultrasoft pseudopotential within the density functional theory (DFT). The surface is modeled using the repeated slabs approach. To study the most favorable ruthenium adsorption model we considered T1, T4 and H3 special sites. We find that the most energetically favorable structure corresponds to the Ru- T4 model or the ruthenium adatom located at the T4 site, while the ruthenium adsorption on top of a gallium atom (T1 position) is totally unfavorable. The ruthenium diffusion on surface shows an energy barrier of 0.612 eV. The resultant reconstruction of the ruthenium adsorption on GaN(0 0 0 1)- 2×2 surface presents a lateral relaxation of some hundredth of Å in the most stable site. The comparison of the density of states and band structure of the GaN(0 0 0 1) surface without ruthenium adatom and with ruthenium adatom is analyzed in detail.  相似文献   

5.
The interaction of hydrogen (deuterium) with different modified Pd(1 1 1) surfaces has been investigated. The focus was put on the energy and angel dependence of the desorbing molecules from oxygen covered, potassium covered and vanadium oxide covered surfaces. Conventional adsorption/desorption as well as permeation/desorption experiments were performed. For the oxygen covered surface optimum reaction rates for water production and the energy distribution of the reaction products were determined, both for the reaction of oxygen with molecular hydrogen as well as with atomic hydrogen. Potassium on the surface enhances the activation barrier for hydrogen adsorption resulting in a hyper-thermal desorption flux and a forward focused angular distribution of desorption. Permeation/desorption of deuterium from ultra-thin vanadium oxide films yield mainly thermalized desorbing molecules or slightly hyper-thermal, depending on the oxidation state of the surface oxide.  相似文献   

6.
The adsorption and decomposition of ethanethiol on GaN (0 0 0 1) surface have been investigated with first-principles calculations. The DFT calculations reveal that ethanethiol adsorbs dissociatively on the clean GaN (0 0 0 1) surface to form ethanethiolate and hydrogen species. An up limit coverage of 0.33 for ethanethiolate monolayer on GaN (0 0 0 1) surface is obtained and the position of the sulfur atom and the tilt angle of the thiolate chain are found to be very sensitive to the surface coverage. Furthermore, the reactivity of ethanethiol adsorption and further thermal decomposition reactions on GaN (0 0 0 1) surface is discussed by calculating the possible reaction pathways and ethene is found to be the major product.  相似文献   

7.
Water molecule adsorption properties at the surface of InVO4 have been investigated using an ab initio molecular dynamics approach. It was found that the water molecules were adsorbed dissociatively to the three-fold oxygen coordinated V sites on the (0 0 1) surface. The dissociative adsorption energy was estimated to be 0.8-0.9 eV per molecule. The equilibrium distance between V and O of the hydroxyl -OH was almost the same as the V-O distance of tetrahedra VO4 in the InVO4 bulk crystal (1.7-1.8 Å).  相似文献   

8.
We have studied hydrogen adsorption on the Ge(1 1 1) c(2 × 8) surface using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy (ARPES). We find that atomic hydrogen preferentially adsorbs on rest atom sites. The neighbouring adatoms appear higher in STM images, which clearly indicates a charge transfer from the rest atom states to the adatom states. The surface states near the Fermi-level have been followed by ARPES as function of H exposure. Initially, there is strong emission from the rest atom states but no emission at the Fermi-level which confirms the semiconducting character of the c(2 × 8) surface. With increasing H exposure a structure develops in the close vicinity of the Fermi-level. The energy position clearly indicates a metallic character of the H-adsorbed surface. Since the only change in the STM images is the increased brightness of the adatoms neighbouring a H-terminated rest atom, we identify the emission at the Fermi-level with these adatom states.  相似文献   

9.
We report the reaction dynamics of cobalt phthalocyanine (CoPc) molecules with Bi-line structures (BLSs) on a Si(1 0 0) surface, investigated using scanning tunneling microscopy (STM). When CoPc molecules were deposited on a Si(1 0 0) surface with BLSs at room temperature, single-spot protrusions were observed in the STM image instead of four-spot images corresponding to CoPcs flat molecular structure. Moreover, domains with a c(4 × 4) periodicity appeared on the terraces of the Si(1 0 0) surface. This indicates that CoPc molecules may have decomposed on the surface by catalytic reaction with Bi atoms.  相似文献   

10.
The adsorption of diethylamine (DEA) on Si(1 0 0) at 100 K was investigated using high-resolution electron energy loss spectroscopy (HREELS) and electron stimulated desorption (ESD). The thermal evolution of DEA on Si(1 0 0) was studied using temperature programmed desorption (TPD). Our results demonstrate DEA bonds datively to the Si(1 0 0) surface with no dissociation at 100 K. Thermal desorption of DEA takes place via a β-hydride elimination process leaving virtually no carbon behind. Electronic processing of DEA/Si(1 0 0) at 100 K results in desorption of ethyl groups; however, carbon and nitrogen are deposited on the surface as a result of electron irradiation. Thermal removal of carbon and nitrogen was not possible, indicating the formation of silicon carbide and silicon nitride.  相似文献   

11.
The structure of the Si(1 1 1)-6 × 1-Ag surface is investigated using crystal truncation rod (CTR) scattering along 00 rod. For the measurement, we developed a manipulator suitable for observing CTR scattering at large momentum transfer perpendicular to the surface. The heights of the silver and reconstructed silicon atoms from the substrate were determined. We also compared the obtained positions with those of the Si(1 1 1)-√3 × √3-Ag surface and found that the heights of those reconstructed atoms are almost the same.  相似文献   

12.
Karl Jug 《Surface science》2007,601(6):1529-1535
Cyclic cluster calculations were performed with the quantum chemical method MSINDO to elucidate the relative stabilities of c(4 × 2), p(3 × 2) and (1 × 1) overlayer structures of water molecules on the MgO(1 0 0) surface. For the c(4 × 2) and p(3 × 2) structures both molecular adsorption and partially dissociated adsorption were considered. In agreement with earlier theoretical studies partial dissociation was found to be more stable than molecular adsorption. For the c(4 × 2) structure both monolayer and double layer coverage were studied. Adsorption was found to be more stabilized with increasing degree of dissociation until 50% of the water molecules were dissociated. In the case of 50% dissociated water molecules we found that one quarter of the Mg atoms were pulled out of the MgO surface when surface relaxation was taken into account. A new structure for the fully dissociated (1 × 1) water monolayer was found which is considerably more stable than previously studied arrangements. In all cases surface relaxation was found to be important. The most stable structures of c(4 × 2), p(3 × 2) and (1 × 1) symmetry have adsorption energies which differ by no more than 13 kJ/mol. This offers an explanation of phase transitions of overlayer structures found by experiments between 180 and 300 K.  相似文献   

13.
The adsorption of fluorescein on the Ag(1 1 0) surface has been investigated by the first-principles pseudopotential method. Various adsorption geometries have been calculated and the energetically most favorable structure of fluorescein/Ag(1 1 0) was identified. The fluorescein molecule, in most favorable structure, is on hollow site, and the adsorption energy is 2.34 eV. Here the adsorption sites refer to the positions at the first layer of the substrate where the middle carbon atom of the fluorescein molecule is located. The bonding strength of the fluorescein molecule to the Ag substrate is site selective, being determined by electron transfer to the oxygen atoms of the molecule and local electrostatic attraction between the oxygen atoms and the silver atoms.  相似文献   

14.
We studied processes of cleaning GaN(0 0 0 1) surfaces on four different types of wafers: two types were hydride vapor phase epitaxy (HVPE) free-standing substrates and two types were metal-organic chemical vapor deposition (MOCVD) films grown on these HVPE substrates and prepared by annealing and/or Ar ion sputtering in ultra high vacuum. We observed the surfaces through treatments using in situ low-energy electron diffraction (LEED), reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and Auger electron spectroscopy, and also using ex situ temperature programmed desorption, X-ray photoelectron spectroscopy, X-ray diffraction, and secondary ion mass spectrometry. For HVPE samples, we obtained relatively clean surfaces under optimized three-step annealing conditions (200 °C for 12 h + 400 °C for 1 h + 500 °C for 5 min) without sputtering, after which the surface contamination of oxide and carbide was reduced to ∼20% of that before annealing. Clear GaN(0 0 0 1)1×1 patterns were obtained by LEED and RHEED. STM images showed flat terraces of ∼10 nm size and steps of ∼0.5 nm height. Upon annealing the HVPE-GaN samples at a much higher temperature (C), three-dimensional (3D) islands with facets were formed and the surface stoichiometry was broken down with the desorption of nitrogen in the form of ammonia, since the samples include hydrogen as an impurity. Ar+ sputtering was effective for removing surface contamination, however, postannealing could not recover the surface roughness but promoted the formation of 3D islands on the surface. For MOCVD/HVPE homoepitaxial samples, the surfaces are terminated by hydrogen and the as-introduced samples showed a clear 1×1 structure. Upon annealing at 500-600 °C, the surface hydrogen was removed and a 3×3 reconstruction structure partially appeared, although a 1×1 structure was dominant. We summarize the structure differences among the samples under the same treatment and clarify the effect of crystal quality, such as dislocations, the concentration of hydrogen impurities, and the residual reactant molecules in GaN films, on the surface structure.  相似文献   

15.
The stable adsorption sites for both Ga and N ions on the ideal and on the reconstructed LiNbO3 (0 0 0 1) surface are determined by means of first-principle total energy calculations. A single N layer is found to be more strongly bound to the substrate than a single Ga layer. The adsorption of a GaN monolayer on the polar substrate within different orientations is then modeled. On the basis of our results, we propose a microscopic model for the GaN/LiNbO3 interface. The GaN and LiNbO3 (0 0 0 1) planes are parallel, but rotated by 30° each other, with in-plane epitaxial relationship [1 0 0]GaN‖ [1 1  0]LiNbO3. In this way the (0 0 0 1) plane lattice mismatch between GaN and LiNbO3 is minimal and equal to 6.9% of the GaN lattice constant. The adsorbed GaN and the underlying LiNbO3 substrate have parallel c-axes.  相似文献   

16.
The growth of thin K films on Si(1 1 1)-7 × 7 has been investigated by selecting the input and output polarizations of second-harmonic generation (SHG) at room temperature (RT) and at an elevated temperature of 350 °C. The SH intensity at 350 °C showed a monotonic increase with K coverages up to a saturated level, where low energy electron diffraction (LEED) showed a 3 × 1 reconstructed structure. The additional deposition onto the K-saturated surface at 350 °C showed only a marginal change in the SH intensity. These variations are different from the multi-component variations up to 1 ML and orders of magnitude increase due to excitation of plasmons in the multilayers at RT. The variations of SHG during desorption of K at 350 °C showed a two-step decay with a marked shoulder which most likely corresponds to the saturation K coverage of the Si(1 1 1)-3 × 1-K surface. The dominant tensor elements contributing to SHG are also identified for each surface.  相似文献   

17.
Pd-Cu bimetallic surfaces formed through a vacuum-deposition of Pd on Cu(1 1 1) have been discussed on the basis of carbon monoxide (CO) adsorption: CO is used as a surface probe and infrared reflection absorption (IRRAS) spectra are recorded for the CO-adsorbed surfaces. Low energy electron diffraction (LEED) patterns for the bimetallic surfaces reveal six-fold symmetry even after the deposition of 0.6 nm. The lattice spacings estimated by the separations of reflection high-energy electron diffraction (RHEED) streaks increase with increasing Pd thickness. Room-temperature CO exposures to the bimetallic surfaces formed by the Pd depositions less than 0.3 nm thickness generate the IRRAS bands due to the three-fold-hollow-, bridge- and linear-bonded CO to Pd atoms. In particular, on the 0.1 nm-thick Pd surface, the linear-bonded CO band becomes apparent at an earlier stage of the exposure. In contrast, the bridge-bonded CO band dominates the IRRAS spectra for CO adsorption on the 0.6 nm-thick Pd surface, at which the lattice spacing corresponds to that of Pd(1 1 1). A 90 K-CO exposure to the 0.1 nm-thick Pd surface leads to the IRRAS bands caused not only by CO-Pd but also by CO-Cu, while the Cu-related band is almost absent from the spectra for the 0.3 nm-thick Pd surface. The results clearly reveal that local atomic structures of the outermost bimetallic surface can be discussed by the IRRAS spectra for the probe molecule.  相似文献   

18.
We investigated the relation between work function and the adsorption structure of dicarboxylic acids (organic molecules) such as succinic acid (HOOC-CH2-CH2-COOH) and an adipic acid (HOOC-(CH2)4-COOH) on a Cu(1 1 0) surface (electrode) as a function of the surface temperature using a Kelvin probe (KP). The work function changes of the two acids are similar. The work function increases by adsorption at room temperature due to ionization of molecules and then decreases with increasing temperature until 450 K due to the effects of change in the dipole moment of the conformational change of the molecule. From 450 to 600 K, the work function is constant because of competition between desorption and change in the dipole moment of molecules. It then reached the clean-surface value. Experiments clarified that the work function was affected by the adsorbed difference in conformation of molecules.  相似文献   

19.
To understand CdTe doping with In, first-principle calculations are performed to obtain the various kinds of surface-structure for In on CdTe (0 0 1) surface. Of all the structures examined, the structure of CdTe (0 0 1) as caused by In adsorption atoms at the fourfold hollow sites with 0.25 monolayer coverage is the most energetically favorable. In atoms are adsorbed on the Cd-terminated surface, whereas below the Te-terminated surface. For the Cd-terminated surface, cadmium vacancy can form spontaneously and is energetically favorable. In atoms are likely to be adsorbed/incorporated at an interstitial site on Te-terminated CdTe (0 0 1) surfaces for most of the range of the chemical potential.  相似文献   

20.
In this paper we present a first-principle study on the energetics of a single As2 molecule on GaSb(0 0 1) reconstructed surface. In order to shed light into the mechanisms of anion exchange at the Sb-rich GaSb(0 0 1) surface, we studied firstly As2 adsorption and then As for Sb exchange. We identify a surface region where both the processes are energetically favored. The results of this twofold analysis can be combined to derive possible reaction paths for the anion exchange process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号