首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Differences in the system constants of the solvation parameter model, discontinuities in retention factor plots (log k against volume fraction of organic solvent) and retention factor correlation plots are used to study the retention mechanism on XTerra MS C18, XBridge C18 and XBridge Shield RP18 stationary phases with acetonitrile–water and methanol–water mobile phases containing from 10 to 70% (v/v) organic solvent. Wetting of XBridge C18 at 10 and 20% (v/v) acetonitrile is incomplete and is responsible for small changes in the retention mechanism. The intermolecular interactions responsible for retention on XTerra MS C18 and XBridge C18 are similar with minor differences in cavity formation and hydrogen-bonding interactions responsible for small selectivity differences. On the other hand, for bulky solutes there are large changes in retention at low volume fractions of organic solvent (<40% v/v) associated with steric repulsion on the XTerra MS C18 stationary phases that is absent for XBridge C18. Selectivity differences are more apparent for XBridge C18 and XBridge Shield RP18. For acetonitrile-water mobile phases cavity formation in the solvated XBridge Shield RP18 is slightly more difficult and hydrogen-bond acid and base interactions are more important than for XBridge C18. With methanol–water mobile phases it becomes slightly easier to form a cavity in the solvated XBridge RP18 compared with XBridge C18. In addition, the methanol-water solvated XBridge RP18 is a stronger hydrogen-bond base and more dipolar/polarizable than XBridge C18. These variations in selectivity justify the use of XBridge C18 and XBridge Shield RP18 as complementary stationary phases for method development.  相似文献   

2.
The solvation parameter model is used to elucidate the retention mechanism of neutral compounds on the pentafluorophenylpropylsiloxane-bonded silica stationary phase (Discovery HS F5) with methanol-water and acetonitrile-water mobile phases containing from 10 to 70% (v/v) organic solvent. The dominant factors that increase retention are solute size and electron lone pair interactions while polar interactions reduce retention. A comparison of the retention mechanism with an octadecylsiloxane-bonded silica stationary phase based on the same silica substrate and with a similar bonding density (Discovery HS C18) provides additional insights into selectivity differences for the two types of stationary phase. The methanol-water solvated pentafluorophenylpropylsiloxane-bonded silica stationary phase is more cohesive and/or has weaker dispersion interactions and is more dipolar/polarizable than the octadecylsiloxane-bonded silica stationary phase. Differences in hydrogen-bonding interactions contribute little to relative retention differences. For mobile phases containing more than 30% (v/v) acetonitrile selectivity differences for the pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica stationary phases are no more than modest with differences in hydrogen-bond acidity of greater importance than observed for methanol-water. Below 30% (v/v) acetonitrile selectivity differences are more marked owing to incomplete wetting of the octadecylsiloxane-bonded silica stationary phase at low volume fractions of acetonitrile that are not apparent for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. Steric repulsion affects a wider range of compounds on the octadecylsiloxane-bonded than pentafluorophenylpropylsiloxane-bonded silica stationary phase with methanol mobile phases resulting in additional selectivity differences than predicted by the solvation parameter model. Electrostatic interactions with weak bases were unimportant for methanol-water mobile phase compositions in contrast to acetonitrile-water where ion-exchange behavior is enhanced, especially for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. The above results are compatible with a phenomenological interpretation of stationary phase conformations using the haystack, surface accessibility, and hydro-linked proton conduit models.  相似文献   

3.
4.
HPTLC-densitometric and HPLC–UV techniques were used for qualitative and quantitative determination of luteolin-7-O-glucuronide, lithospermic acid, rosmarinic acid and caffeic acid in several herbal drugs from the Lamiaceae family: Thymi herba, Serpylli herba, Majoranae herba and Menthae piperitae folium. Unmodified silica gel (HPTLC Si60) and silica gel chemically modified with aminopropyl groups (HPTLC NH2) were used during the investigation process. Among HPTLC methods the best resolution and selectivity was achieved with mobile phases: diisopropyl ether–acetone–formic acid–water (50:30:10:10, v/v/v/v) and acetone–formic acid (85:15, v/v), respectively. Plates were densitometrically evaluated. Contents of analyzed compounds in the studied aqueous extracts prepared from herbal drugs were established using both techniques. The results from the HPTLC-densitometric analysis have been compared with those from HPLC–UV on a C18 column with acetonitrile–water–formic acid as a mobile phase. The chromatographic methods were validated for linearity, LOD, LOQ, repeatability, intermediate precision and recovery. An analysis of variance showed that the HPTLC-densitometric and HPLC–UV methods are equivalent and sufficiently precise for the estimation of polyphenolic compounds mentioned above, in investigated herbal drugs. All of the suggested methods (HPTLC NH2, HPTLC Si60 and HPLC RP18) give results with good agreement.  相似文献   

5.
6.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsilioxane-bonded silica stationary phase, Ascentis TM C18, with acetonitrile-water and methanol-water mobile phase compositions containing 10–70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (1), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent compositions with a discontinuity at low organic solvent mobile phase compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes excluded from the models. The overwhelming number of residual values, here defined as the difference between experimental and model predicted retention factors for the excluded solutes, could be explained by contributions from steric repulsion. The latter defined as the inability of solutes to fully insert themselves into the solvated stationary phase because of their size or conformation. Steric repulsion resulted in a systematic reduction in retention compared with predicted values for the fully inserted solute. The bonding density of the stationary phase; the type and composition of the mobile phase; and the size, conformation, type and number of functional groups on the solute are shown to affect the contribution of steric repulsion to the retention mechanism.  相似文献   

7.
The solvation parameter model is used to establish the contribution of cohesion, dipole-type and hydrogen-bonding interactions to the retention mechanism on an XTerra MS C18 stationary phase with acetonitrile-water, methanol-water and tetrahydrofuran-water mobile phases containing from 10 to 70% (v/v) organic solvent. Solute size and electron lone pair interactions are responsible for retention while dipole-type and hydrogen-bonding interactions result in lower retention. The volume fraction of water in the mobile phase plays a dominant role in the retention mechanism. However, the change in values of the system constants of the solvation parameter model cannot be explained entirely by assuming the principle role of the organic solvent is to act as a diluent for the mobile phase. Selective solvation of the stationary phase by the organic solvent and the ability of the organic solvent to extract water into the stationary phase, and/or the absorption of water-organic solvent complexes by the stationary phase, are important in accounting for the details revealed about the retention mechanism by the solvation parameter model. A qualitative picture of the above solvent effects, compatible with current knowledge of solvent and stationary phase properties, is presented.  相似文献   

8.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an ethyl-bridged, ocatadecylsiloxane-bonded superficially porous silica stationary phase (Kinetex EVO C18) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not methanol–water mobile phase compositions. Compared with a superficially porous octadecylsiloxane-bonded silica stationary phase (Kinetex C18) with a similar morphology but different topology statistically significant differences in selectivity at the 95% confidence level are observed for neutral compounds that vary by size and hydrogen-bond basicity with other intermolecular interactions roughly similar. These selectivity differences are dampened with acetonitrile–water mobile phases, but are significant for methanol–water mobile phase compositions containing <30% (v/v) methanol. A comparison of a totally porous ethyl-bridged, octadecylsiloxane-bonded silica stationary phase (XBridge C18) with Kinetex EVO C18 indicated that they are effectively selectivity equivalent.  相似文献   

9.
10.
L. Szepesy  V. Háda 《Chromatographia》2001,54(1-2):99-108
Summary Eight commercially available reversed-phase (RP) columns of widely different characteristics were evaluated and compared using the linear solvation energy relationships (LSER). Retention factors of 32 solutes of different types were determined under isocratic conditions using an acetonitrile-water (30∶70) mobile phase. Stationary phase properties were compared by the fitting coefficients of the LSER-based regression equations which are characteristic of the individual stationary phases and represent the extent of various molecular interactions contributing to the retention process. The good agreement between the calculated and measured logk values for different type of compounds support the adequacy and applicability of the LSER model to describe chromatographic retention. Characterization of column performance for the separation of various type of compounds was established by the determination of the different selectivity factors representing hydrophobic selectivity, polar selectivity and specific selectivity.  相似文献   

11.
Poly(2-N-carbazolylethyl acrylate) with terminal trimethoxysilyl groups was prepared as an organic phase and immobilized onto silica. The retention behavior of the column packed with this carbazole-based polymer-immobilized silica (Sil-CEA) was investigated by using various estrogenic steroids and corticoids in both reversed-phase and normal-phase liquid chromatography. As a result, complete separation was confirmed for eight kinds of steroids with Sil-CEA. The most specific separation with Sil-CEA can be emphasized by the high separation factor (e.g., α = 1.39 in methanol–water (7:3, v/v) at 35 °C) for 17α and 17β-estradiols, one of the most difficult pairs of isomers in chromatographic separation, whereas for two kinds of commercially available polymeric ODS columns as references α = 1.01, only, under the same conditions. Because the excellent separation and retention order with Sil-CEA was maintained even in a normal-phase mobile phase such as a hexane–2-propanol, it is estimated that the CEA phase has multiple interaction mechanisms through stronger interactions such as dipole–dipole, carbonyl–π, and hydrogen bonding interactions than the hydrophobic effect expected with ODS.  相似文献   

12.
Retention and separation of achiral compounds in supercritical fluid chromatography (SFC) depend on numerous parameters: some of these parameters are identical to those encountered in HPLC, such as the mobile phase polarity, while others are specific to SFC, as the density changes of the fluid, due to temperature and/or pressure variations. Additional effects are also related to the fluid compressibility, leading to unusual retention changes in SFC, for instance when flow rate or column length is varied. These additional effects can be minimised by working at lower temperatures in the subcritical domain, simplifying the understanding of retention behaviours. In these subcritical conditions, varied modifiers can be mixed to carbon dioxide, from hexane to methanol, allowing tuning the mobile phase polarity. With nonpolar modifiers, polar stationary phases are classically used. These chromatographic conditions are close to the ones of normal-phase LC. The addition of polar modifiers such as methanol or ACN increases the mobile phase polarity, allowing working with less polar stationary phases. In this case, despite the absence of water, retention behaviours generally follow the rules of RP LC. Moreover, because identical mobile phases can be used with all stationary phase types, from polar silica to nonpolar C18-bonded silica, the classical domains, RP and normal-phase, are easily brought together in SFC. A unified classification method based on the solvation parameter model is proposed to compare the stationary phase properties used with the same subcritical mobile phase.  相似文献   

13.
The solvation parameter model is used to establish the contribution of cohesion, dipole-type, and hydrogen-bonding interactions to the retention mechanism on Synergi Hydro-RP, Fusion-RP, and Polar-RP reversed-phase columns with methanol–water mobile phases containing from 10–70% (v/v) methanol. Large changes in relative retention on the compared columns can result from steric resistance, differences in the phase ratios, and from dewetting at low methanol compositions while changes in intermolecular interactions are responsible for smaller changes at a fixed mobile phase composition. For Synergi Hydro-RP and Polar-RP changing methanol for acetonirile is more powerful for affecting changes in retention order than changing the stationary phase. The three Synergi columns show useful selectivity differences for method development when compared with 13 other modern reversed-phase columns representing a selection of different stationary phase chemistries. The results from this study indicate the limitations of classifying reversed-phase columns by the retention of prototypical compounds to define specific retention mechanisms.  相似文献   

14.
A hybrid stationary phase, XTerra MS C18, has been evaluated for the high-temperature reversed-phase liquid chromatography of selected hydrophobic steroids. The effects on the retention and efficiency at temperatures up to 130°C and eluent compositions from methanol–water mixtures to superheated water were studied. The thermodynamic data of the separations were determined. It was shown that increasing the temperature enabled the percentage of methanol to be reduced. High mobile-phase flow rates could be used, but for these non-polar analytes, the retention times with superheated water as the eluent were still high.  相似文献   

15.
The effect of varying mobile phase composition across a ternary space between two binary compositions is examined, on four different reversed-phase stationary phases. Examined stationary phases included endcapped C8 and C18, as well as a phenyl phase and a C18 phase with an embedded polar group (EPG). Mobile phases consisting of 50% water and various fractions of methanol and acetonitrile were evaluated. Retention thermodynamics are assessed via use of the van’t Hoff relationship, and retention mechanism is characterized via LSER analysis, as mobile phase composition was varied from 50/50/0 water/methanol/acetonitrile to 50/0/50 water/methanol acetonitrile. As expected, as the fraction of acetonitrile increases in the mobile phase, retention decreases. In most cases, the driving force for this decrease in retention is a reduction of the enthalpic contribution to retention. The entropic contribution to retention actually increases with acetonitrile content, but not enough to overcome the reduction in the enthalpic contribution. In a similar fashion, as methanol is replaced with acetonitrile, the v, e, and a LSER system constants change to favor elution, while the s and c constants change to favor retention. The b system constant did not show a monotonic change with mobile phase composition. Overall changes in retention across the mobile phase composition range varied, based on the identity of the stationary phase and the composition of the mobile phase.  相似文献   

16.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

17.
Differences in the system constants of the solvation parameter model and retention factor correlation plots for varied solutes are used to study the retention mechanism on XBridge C8, XBridge Phenyl and XTerra Phenyl stationary phases with acetonitrile–water and methanol–water mobile phases containing from 10 to 70% (v/v) organic solvent. These stationary phases are compared with XBridge C18 and XBridge Shield RP18 characterized in an earlier report using the same protocol. The XBridge stationary phases are all quite similar in their retention properties with larger difference in absolute retention explained by differences in cohesion and the phase ratio, mainly, and smaller changes in relative retention (selectivity) by the differences in individual system constants and their variation with mobile phase type and composition. None of the XBridge stationary phases are selectivity equivalent but XBridge C18 and XBridge Shield RP18 have similar separation properties, likewise so do XBridge C8 and XBridge Phenyl, while the differences between the two groups of two stationary phases is greater than the difference within either group. The limited range of changes in selectivity is demonstrated by the high coefficient of determination (>0.98) for plots of the retention factors for varied compounds on the different XBridge phases with the same mobile phase composition.  相似文献   

18.
Two stationary phases attached to a silica hydride surface, cholesterol and bidentate C18, are investigated with a number of pharmaceutically related compounds in order to illustrate the various retention mechanisms that are possible for these bonded materials. The test solutes range from hydrophilic to hydrophobic based on log P (octanol/water partition coefficient) and pKa values. The mobile phases consist of acidified (formic and perchloric acid) water/methanol or water/ACN mixtures. Of particular interest are the high organic content mobile phase compositions where the retention would increase if the bonded material was operating in the aqueous normal phase (ANP) mode. Plots of retention factor (k) versus mobile phase composition are used to elucidate the retention mechanism. A number of examples are presented where solutes are retained based on RP, ANP, or dual retention mechanisms. The silica hydride-based stationary phases can also retain compounds in the organic normal phase.  相似文献   

19.
A weak cation-exchange monolithic column has been prepared in stainless steel tubing and used as the solid-phase extraction material in quantitative analysis of caffeine and theophylline in urine. Column switching, with water as mobile phase, was used for on-line cleaning and screening of human urine samples. Reversed-phase high-performance liquid chromatography was then performed on a C18 column with methanol–water 30:70 (v/v) as mobile phase at a flow rate of 0.5 mL min−1. Ultraviolet detection was performed at 274 nm. Good linear relationships were obtained between response and concentrations of caffeine and theophylline in the range 0.1–50 μg mL−1. Absolute recovery ranged from 77.4 to 82.3% and inter-day and intra-day relative standard deviations were less than 5%. The method was suitable for analysis of caffeine and theophylline in human urine, because it eliminated tedious pretreatment and enabled rapid, economic, repeatable, and effective assay of traces of the drugs in biological samples.  相似文献   

20.
Summary To ensure the safety of human food the European Union (EU) has set tolerance levels for quinolone compounds in animal products, so screening and confirmatory analytical methods are required for monitoring of these drugs. In this work, the proportion of organic modifier and the pH of acetonitrile-water mixtures used as mobile phases were optimized for separation of a group of quinolones. Linear solvation energy relationship (LSER) formalism based on the single solvent polarity parameterE T N was used to predict the chromatographic behaviour of the compounds as a function of the amount of acetonitrile in the mobile phase. Correlation between retention and the pH of aqueous-organic mobile phases has also been used to optimize mobile-phase pH. The optimized mobile phase was a linear gradient starting from 18∶82 (v/v) acetonitrileacetate + formate buffer, pH 2.5. Quality data were determined and were satisfactory. The method detection limit was approximately 10 ng mL−1 for most of the quinolones studied. The proposed mobile phase is compatible with mass spectrometric detection of the substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号