首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable gold nanoparticles have been prepared by using soluble starch as both the reducing and stabilizing agents; this reaction was carried out at 40 °C for 5 h. The obtained gold nanoparticles were characterized by UV–Vis absorption spectroscopy, transmission electron microscopy (TEM) and z-scan technique. The size of these nanoparticles was found to be in the range of 12–22 nm as analyzed using transmission electron micrographs. The optical properties of gold nanoparticles have been measured showing the surface plasmon resonance. The second-order nonlinear optical (NLO) properties were investigated by using a continuous-wave (CW) He–Ne laser beam with a wavelength of 632.8 nm at three different incident intensities by means of single beam techniques. The nonlinear refractive indices of gold nanoparticles were obtained from close aperture z-scan in order of 10?7 cm2/W. Then, they were compared with diffraction patterns observed in far-field. The nonlinear absorption of these nanoparticles was obtained from open aperture z-scan technique. The values of nonlinear absorption coefficient are obtained in order of 10?1 cm/W.  相似文献   

2.
The silver colloidal solutions were prepared by in situ synthesis technique in the presence of the Polymethyl Methacrylate, which was polymerized by reversible addition-fragmentation transfer. The UV–VIS spectra and transmission electron microscopy had shown the formation of sphere silver nanoparticles with average size of 10 nm. Nonlinear optical properties as a function of silver concentration were studied using Z-scan technique with 13 ns pulse duration at 532 nm. The optical nonlinearity enhancement was observed by increasing the concentration. The third-order nonlinear susceptibility χ(3) was measured to 1.045 × 10−11 esu when the concentration was 2.13 mg/ml. Besides, the sample was founded to exhibit a shift from saturable absorption to reverse saturable absorption at higher incident laser energy. The reverse saturable absorption was observed to be responsible for the optical limiting characteristics in our experiments.  相似文献   

3.
We study the effects of exciton confinement on the nonlinear optical susceptibility of one-dimensional quantum dots. We use a direct numerical diagonalization to obtain the eigenenergies and eigenstates of the discretized Hamiltonian representing an electron–hole pair confined by a semiparabolic potential and interacting with each other via a Coulomb potential. Density matrix perturbation theory is used to compute the nonlinear optical susceptibilities due to third-harmonic generation and the corresponding nonlinear corrections to the refractive index and absorption coefficient. These quantities are analyzed as a function of ratio between the confinement length L and the exciton Bohr radius a0. The Coulomb potential degrades the uniformity of the level separation. We show that this effect promotes the emergence of multiple resonance peaks in the third-harmonic generation spectrum. In the weak confinement regime β = L/a0 ? 1, the third-order susceptibility is shown to decay as 1/β8 due to the prevalence of the hydrogenoid character of the exciton eigenstates.  相似文献   

4.
The ZnS quantum dots (QDs) with Cr and Cu doping were synthesized by chemical co-precipitation method. The nanostructures of the prepared undoped and doped ZnS QDs were characterized by UV–vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sizes of QDs were found to be within 3–5 nm range. The nonlinear parameters viz. Two photon absorption coefficient (β2), nonlinear refractive index (n2), third order nonlinear susceptibility (χ3) at wavelength 532 nm and Four photon absorption coefficient (β4) at wavelength 1064 nm have been calculated by Z-scan technique using nanosecond Nd:YAG laser in undoped, Cr doped and Cu doped ZnS QDs. Higher values of nonlinear parameters for doped ZnS infer that they are potential material for the development of photonics devices and sensor protection applications.  相似文献   

5.
Xi Bao  Feng Liu  Xiaoli Zhou 《Optik》2012,123(16):1474-1477
Prototype devices based on black silicon have been fabricated by microstructuring 250 μm thick multicrystalline n doped silicon wafers using femtosecond pulsed laser in ambient gas of SF6 to measure its photovoltaic properties. The enhanced optical absorption of black silicon extends across the visible region and all the black silicons prepared in this work exhibit enhanced optical absorption close to 90% from 300 nm to 800 nm. The highest open-circuit voltage (Voc) and short-circuit current (Isc) under the illumination of He–Ne continuous laser at 632.8 nm were measured to be 53.3 mV and 0.11 mA, respectively at a maximum power conversion efficiency of 1.44%. Upon excitation with He–Ne continuous laser at 632.8 nm, external quantum efficiency (EQE) of black silicon as high as 112.9% has also been observed. Development of black silicon for photovoltaic purposes could open up a new perspective in achieving high efficient silicon-based solar cell by means of the enhanced optical absorption in the visible region. The current–voltage characteristic and photo responsivity of these prototype devices fabricated with microstructured silicon were also investigated.  相似文献   

6.
The nonlinear optical properties of Sudan I were investigated by a single beam Z-scan technique. The Sudan I ethanol solution exhibited large nonlinear refractive indices under both CW and pulse laser excitations. The nonlinear refractive indices of Sudan I were in the order of ?10?8 cm2/W under CW 633 nm excitation and ?10?6 cm2/W under CW 488 nm excitation, respectively. Under the excitation of a pulse 532 nm laser, the nonlinear refractive index n2 was calculated to be 1.19 × 10?14 cm2/W. It was discussed that the mechanism accounting for the process of nonlinear refraction was attributed to the laser heating for the CW laser excitation and the electronic effect for the pulse excitation. Moreover, the second hyperpolarizability of Sudan I was also estimated in this paper.  相似文献   

7.
《Physics letters. A》2014,378(32-33):2443-2448
The interface optical phonons and its ternary effects in onion-like quantum dots are studied by using dielectric continuum model and the modified random-element isodisplacement model. The dispersion relations, the electron–phonon interactions and ternary effects on the interface optical phonons are calculated in the GaN/AlxGa1  xN onion-like quantum dots. The results show that aluminium concentration has important influence on the interface optical phonons and electron–phonon interactions in GaN/AlxGa1  xN onion-like quantum dots. The frequencies of interface optical phonons and electron–phonon coupling strengths change linearly with increase of aluminium concentration in high frequency range, and do not change linearly with increasing aluminium concentration in low frequency range.  相似文献   

8.
A continuous-wave (CW) YAG laser (power: 0.75–0.9 J/s, irradiation time: 15 s–15 min) with a wavelength of 1064 nm is irradiated to 11.1Sm2O3·44.4BaO·44.4B2O3 glass, and the formation of β-BaB2O4 (β-BBO) crystalline dots with a diameter of 30–150 μm is confirmed from micro-Raman spectra. β-BBO crystals with around 200 μm length grow towards the interior of the glass. The incorporation of Sm3+ into β-BBO crystalline dots is suggested from micro-Raman and fluorescence spectra. The second harmonic generation is detected from the array (10×10=100 dots) of β-BBO crystalline dots, indicating that each crystalline dot formed by YAG laser irradiation is a nonlinear optical crystal. CW YAG laser irradiation to glass with Sm3+ ions is a nice technique for a spatially controlled crystal growth.  相似文献   

9.
Undoped and Erbium (Er) doped zinc oxide (EZO) thin films were deposited on glass substrate by sol–gel method using spin coating technique with different doping concentration. EZO films were characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV–VIS-NIR transmission and single beam z scan method under illumination of frequency doubled Nd:YAG laser. The deposited films were found to be well crystallized with hexagonal wurtzite structure having a preferential growth orientation along the ZnO (002) plane. A blue-shift was observed in the band gap of EZO films with increasing Er concentration. All the films exhibited a negative value of nonlinear refractive index (n2) at 532 nm which is attributed to the two photon absorption and weak free carrier absorption. Third order nonlinear optical susceptibility, χ(3) values of EZO films were observed in the remarkable range of 10? 6 esu. EZO (0.4 at.%) sample was found to be the best optical limiter with limiting threshold of 1.95 KJ/cm2.  相似文献   

10.
An organometallic complex, bis(tetra-n-propylammonium)bis(2-thioxo-1,3-dithiole-4,5-dithiolato)cuprate(II), [(C3H7)4N]2[Cu(dmit)2] (dmit2?=4,5-dithiolate-1,3-dithiole-2-thione), abbreviated as PrCu, was synthesized. The films of PrCu were prepared using spin coating method. The third-order nonlinear optical properties of PrCu in acetone solution and PMMA films were investigated by Z-scan technique at 1064 nm with laser duration of 20 ps. The Z-scan spectra reveal that the composite films exhibit large negative nonlinear refractive indices of the order of 10?15 m2/W, which are three orders larger than that in acetone solution. The nonlinear absorption coefficients were calculated to be 9.416×10?10 m/W. For the composite films, the figure of merit, W and T, meet the requirement of all-optical switching devices. The experimental results show that the PrCu-doped PMMA films have potential applications for nonlinear optical devices.  相似文献   

11.
This paper presents results of investigations of carrier scattering mechanisms in n-Cd1xMgxSe mixed crystals with magnesium content varying from x = 0 to x = 0.33. Experimental results obtained by means of the Fourier Transform Infrared Spectroscopy (FT-IR) and Hall measurements are discussed in the frame of the Drude and the quantum theories. The character of the wavelength dependence of the optical absorption coefficient in investigated crystals was found to be of the type ∼λp, where 2 < p < 3.5. The p = 2 is expected from the Drude theory and the relaxation time approximation. The obtained experimental values of p parameter suggest that the optical phonon and impurity scattering mechanisms are dominating scattering mechanisms in these crystals. The calculated carrier concentration from optical absorption spectrum for a n-CdSe crystal is in a good agreement with this obtained from Hall measurement.  相似文献   

12.
《Current Applied Physics》2010,10(2):565-569
The polycrystalline Cu2ZnSnS4 (CZTS) thin films have been prepared by pulsed laser deposition (PLD) method at room temperature. The laser incident energy was varied from 1.0 at the interval of 0.5–3.0 J/cm2. The effect of laser incident energy on the structural, morphological and optical properties of CZTS thin films was studied by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and optical absorption. The studies reveal that an improvement in the structural, morphological and optical properties of CZTS thin films with increasing laser incident energy up to 2.5 J/cm2. However, when the laser incident energy was further increased to 3.0 J/cm2, leads to degrade the structural, morphological and optical properties of the CZTS thin films.  相似文献   

13.
In this work, the pulsed electron beam deposition method (PED) is evaluated by studying the properties of ZnO thin films grown on c-cut sapphire substrates. The film composition, structure and surface morphology were investigated by means of Rutherford backscattering spectrometry, X-ray diffraction and atomic force microscopy. Optical absorption, resistivity and Hall effect measurements were performed in order to obtain the optical and electronic properties of the ZnO films. By a fine tuning of the deposition conditions, smooth, dense, stoichiometric and textured hexagonal ZnO films were epitaxially grown on (0001) sapphire at 700 °C with a 30° rotation of the ZnO basal plane with respect to the sapphire substrate. The average transmittance of the films reaches 90% in the visible range with an optical band gap of 3.28 eV. Electrical characterization reveals a high density of charge carrier of 3.4 × 1019 cm?3 along with a mobility of 11.53 cm²/Vs. The electrical and optical properties are discussed and compared to ZnO thin films prepared by the similar and most well-known pulsed laser deposition method.  相似文献   

14.
A novel organometallic compound, ethyltriphenylphosphonium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)aurate (III), abbreviated as TPEPADT, was synthesized. The TPEPADT doped poly(methyl methacrylate) (PMMA) thin film with a mass fraction of 1% (1 wt.%) was prepared by using a spin-coating method. The third-order nonlinear optical properties of TPEPADT in acetonitrile solution and TPEPADT-doped PMMA thin film were investigated by using the laser Z-scan technique at the wavelength 1064 nm with laser duration of 20 ps. The linear refractive index of the polymer thin film was also studied. The Z-scan curves revealed that both TPEPADT in acetonitrile solution and the polymer thin film possessed negative nonlinear refraction, exhibiting a self-defocusing effect and nonlinear absorption was negligible under the experimental conditions used. The nonlinear refractive index was calculated to be ?1.9 × 10?18 m2/W for TPEPADT in acetonitrile solution and ?8.9 × 10?15 m2/W for the polymer thin film. These results suggest that TPEPADT have potential for the application of all-optical switching devices.  相似文献   

15.
The performance of widely tuneable, continuous wave (cw) external-cavity quantum cascade laser (EC-QCL) has been evaluated for direct absorption spectroscopy measurements of nitric oxide (NO) in the wavenumber range 1872–1958 cm?1 and with a 13.5 cm long optical cell. In order to reduce the absorption measurement errors due to the large variations of laser intensity, normalisation with a reference channel was used. Wavelength stability within the scans was analysed using the Allan plot technique for the reduced wavenumber range of 1892.4–1914.5 cm?1. The Allan variances of the NO absorption peak centres and areas were observed to increase with successive scan averaging for all absorption peaks across the wavelength scan, thus revealing short- and long-term drifts of the cw EC-QCL wavelength between successive scans. As an example application, the cw EC-QCL was used for NO measurements in the exhaust of an atmospheric pressure packed-bed plasma reactor applied to the decomposition of dichloromethane in waste gas streams. Etalon noise was reduced by subtracting a reference spectrum recorded when the plasma was off. The NO limit of detection (SNR = 1) was estimated to be ~2 ppm at atmospheric pressure in a 20.5 cm long optical cell with a double pass and a single 7 s scan over 1892.4–1914.5 cm?1.  相似文献   

16.
The third-order nonlinear optical properties of polyurethane-urea/multiwalled carbon nanotube composites (PU/MWNT) films with different MWNT concentrations are investigated by the use of the Z-scan technique at a wavelength of 532 nm with a pulse duration of 8 ns. The results reveal that the nonlinear refraction and absorption coefficients are linearly dependent on the MWNT concentration. The negative nonlinear refraction effect is validated from the closed-aperture Z-scan measurements. We find that PU/MWNT films are promising nonlinear optical materials, and the nonlinear coefficients can be controlled.  相似文献   

17.
A femtosecond differential optical Kerr gate (DOKG) and Z-scan techniques, have been applied to investigate the third-order optical nonlinearity of composite film of the coordination complex [PdLPPh3] (L=N-(2-pyridyl)-N′-(salicylidene)hydrazine, PPh3=triphenylphosphine). Film exhibits superior nonlinear optical properties in the near-infrared spectral region. The nonlinear response time and third-order nonlinear optical susceptibility of complex were found to be≤90 fs and 3.9×10?10 esu, respectively. The Z-scan result shows that saturable absorption property of the film and its nonlinear absorption coefficient of the sample was found to be ?23 cm/GW.  相似文献   

18.
Using the semiclassical coherent radiation—semiconductor interaction model, optical nutation has been analysed in aGaAs / AlxGa1  xAs quantum well structure (QWS) assumed to be immersed in a moderately strong magnetic field and irradiated by a not-too-strong near band gap resonant femtosecond pulsed Ti–sapphire laser. The finite potential well depth of the QWS and the Wannier–Mott excitonic structure of the crystal absorption edge is taken into account. The excitation intensity is assumed to be below the Mott transition where the various many-body effects have been neglected with adequate reasoning. Numerical analysis made for a GaAs quantum well of thickness    100 Åand the confining layers ofAlxGa1  xAs withx =  0.3 at intensity I   5  ×  106Wcm  2reveals that the real and imaginary parts of the transient complex-induced polarization are enhanced with an increase in the magnetic field and their ringing behaviour confirms the occurrence of optical nutation in the QWS.  相似文献   

19.
The optical limiting action of C60 doped poly(ethylacetylenecarboxylate) polymer has been carried out using Pulse Nd-YAG laser at 532 nm as the source of excitation. The optical limiting measurements were performed at three different doping concentrations. The optical limiting efficiency of the C60 doped poly(ethylacetylenecarboxylate) polymer was studied at various doping concentrations, the threshold limiting fluence at 0.15 J/cm2 was observed with transmission of about 89%. An explanation based on the combination of two-photon absorption and reverse saturable absorption was proposed for its nonlinear optical absorption behavior.  相似文献   

20.
Nonlinear self-rotation of elliptically polarized laser pulses (λ = 532 nm, τFWHM ~ 12 ns) in toluene, benzene and binary mixture (toluene + ethanol) solutions of fullerene C70 has been investigated experimentally. Absolute values and signs of the nonlinear refractive indices (n2) and nonlinear optical susceptibilities χ(3)(ω, ? ω, ω) of C70 solutions in toluene and benzene at different values of polarization ellipse (θ = 0.2 ÷ 0.8) have been determined. High-resolution transmission electron microscope studies of C70 solutions showed that in toluene + ethanol mixtures ball-shaped C70 clusters are formed with particle sizes in the range ~ 100 ÷ 500 nm. It has been demonstrated, that the clusters sizes depend on the C70 concentration and volume fraction of ethanol in toluene. Correlation between the processes of C70 clusters formation in solutions and the values of polarization self-rotation angle of transmitted laser beam has been demonstrated. Physical mechanisms of laser induced optical activity in fullerene solutions have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号