首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用线性组合算符和幺正变换方法,研究磁场和耦合强度对光学极化子性质的影响。数值计算表明:当电子接近晶体表面时,光学极化子的振动频率、基态能量和第一激发能仅与磁场有关,且随磁场强度的增强而增大;当电子远离晶体表面时,基态能量和第一激发能与磁场强度和耦合参数均有关,且随磁场强度和耦合参数的增加而增加。  相似文献   

2.
丁朝华  裴志成  赵颖  肖景林 《发光学报》2018,39(12):1669-1673
研究了磁场作用下石墨烯中电子与表面光学声子弱耦合情况下的极化子的性质。采用线性组合算符和Pekar变分法分别推导出了石墨烯中弱耦合极化子的基态能量E0、第一激发态能量E1和跃迁频率ω随磁场强度B和德拜截止波数kd之间的变化关系。数值计算结果表明,极化子的基态能量E0随磁场强度B变化的曲线(kd一定时)和E0随kd的变化曲线(B一定时)均会分裂成对称的两条,并且当B一定时E0的绝对值随kd的增加而增加。在kd一定时,极化子的第一激发态能量E1和跃迁频率ω均为磁场B的增函数;在B一定时,E1和ω均随kd的增加而增大。  相似文献   

3.
WEI XIAO  JING-LIN XIAO 《Pramana》2013,81(5):865-871
By employing a variational method of the Pekar-type, which has different variational parameters in the xy plane and the z-direction, we study the ground and the first excited state energies and transition frequency between the ground and the first excited states of a strong-coupling polaron in an anisotropic quantum dot (AQD) under an applied magnetic field along the z-direction. The effects of the magnetic field and the electron–phonon coupling strength are taken into account. It is found that the ground and the first excited state energies and the transition frequency are increasing functions of the external applied magnetic field. The ground state and the first excited state energies are decreasing functions, whereas transition frequency is an increasing function of the electron–phonon coupling strength. We find two ways of tuning the state energies and the transition frequency: by adjusting (1) the magnetic field and (2) the electron–phonon coupling strength.  相似文献   

4.
束缚磁极化子的性质   总被引:11,自引:7,他引:4  
采用线性组合算符和幺正变换方法分别导出弱、强耦合情形下束缚磁极化子的振动频率和基态能量.结果表明库仑场的存在使得磁极化子的基态能量的绝对值变小.  相似文献   

5.
表面磁极化子的光学声子平均数   总被引:5,自引:3,他引:2  
采用Tokuda改进的线性组合算符、Lagrange乘子和变分法,讨论了强、弱耦合表面磁极化子的性质。计算了极化子的基态能量和光学声子平均数。以AgCl和ZnS晶体为例进行了数值计算。讨论了表面磁极化子振 动频率、基态能量和光学声子平均数与磁场B和拉格朗日乘子u的关系。  相似文献   

6.
讨论了级联四能级系统中基态精细结构能级之间的量子相干引起的非线性效应。耦合场同时激励激发态的下精细结构能级和基态的两个精细结构能级之间的光学跃迁使系统中出现新吸收峰。研究结果表明,基态精细结构能级之间的粒子弛豫速率越小,量子相干效应越显著,但是增大耦合场的Rabi频率会削弱这种量子相干效应。  相似文献   

7.
采用线性组合算符和幺正变换方法,研究非对称量子点中强耦合磁极化子的激发态性质。导出强耦合磁极化子的第一内部激发态能量、激发能量和从第一内部激发态到基态的跃迁谱线频率随量子点的横向和纵向有效受限长度、磁场的回旋频率和电子-声子耦合强度的变化关系。数值计算结果表明:第一内部激发态能量、激发能量和跃迁谱线频率随磁场的回旋频率和电子-声子耦合强度的增加而增大.随量子点的横向和纵向有效受限长度的减小而迅速增大,表现出奇特的量子尺寸效应。  相似文献   

8.
讨论了级联四能级系统中基态精细结构能级之间的量子相干引起的非线性效应。耦合场同时激励激发态的下精细结构能级和基态的两个精细结构能级之间的光学跃迁使系统中出现新吸收峰。研究结果表明,基态精细结构能级之间的粒子弛豫速率越小,量子相干效应越显著,但是增大耦合场的Rabi频率会削弱这种量子相干效应。  相似文献   

9.
Using the matrix diagonalization method and the compact density-matrix approach, we studied the combined effects of hydrostatic pressure and temperature on the electronic and optical properties of an exciton-donor complex in a disc-shaped quantum dot. We have calculated the binding energy and the oscillator strength of the intersubband transition from the ground state into the first excited state as a function of the dot radius. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index have been examined. We find that the ground state binding energy and the oscillator strength are strongly affected by the quantum dot radius, hydrostatic pressure and temperature. The results also show that the linear, third-order nonlinear and total absorption coefficients and refractive index changes strongly depend on temperature and hydrostatic pressure.  相似文献   

10.
The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective mass approximation, using the matrix diagonalization method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L =0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. We find that the linear, nonlinear third-order, and total optical absorption coefficients are strongly affected by the confinement strength of QDs, the external magnetic field, and the incident optical intensity.  相似文献   

11.
利用线性组合算符和幺正变换相结合的方法,推导出极化子基态与耦合强度和磁场强度的关系。数值计算表明:当磁场强度给定时,随着耦合常数α的增加,振动频率λ先减小后增大;基态能量E0单调下降;自陷能E0tr单调增大;Landau能E0L先增大,达到最大值后又下降。当耦合强度给定时,随着磁场强度的增大,λ单调增大,且α愈小,λ增加愈快;基态能量E0随磁场强度的增大而增大;自陷能E0tr随着磁场强度的增大而略有增加;Landau能E0L随着磁场强度的增大先增大,达到最大值后,又开始下降。  相似文献   

12.
The nonlinear optical properties of an off-center hydrogenic donor in a two-dimensional quantum dot under applied magnetic field are investigated in detail by using the matrix diagonalization method. Based on the computed energies and wave functions, the linear, third-order and total optical absorption coefficients as well as the refractive index changes have been examined between the ground state (L=0) and the first excited state (L=1). The results show that the ion position, the applied magnetic field, the confinement frequency, and the incident optical intensity have an important influence on the nonlinear optical properties of off-center donors.  相似文献   

13.
We describe a matter-wave amplifier for vibrational ground-state molecules which uses a Feshbach resonance to first form quasibound molecules starting from an atomic Bose-Einstein condensate. The quasibound molecules are then driven into their stable vibrational ground state via a two-photon Raman transition inside an optical cavity. The transition from the quasibound state to the electronically excited state is driven by a classical field. Amplification of ground state molecules is then achieved by using a strongly damped cavity mode for the transition from the electronically excited molecules to the molecular ground state.  相似文献   

14.
外场下SnS分子结构及其特性   总被引:1,自引:0,他引:1       下载免费PDF全文
黄多辉  王藩侯  万明杰  蒋刚 《物理学报》2013,62(1):13104-013104
对S原子采用6-311++G**基组,Sn原子采用SDB-cc-pVTZ基组,利用密度泛函(B3P86)方法对SnS分子进行了基态结构优化,并研究了外场作用下SnS基态分子键长、能量、能级分布、电荷布居分布、谐振频率和红外谱强度的影响规律.然后利用含时密度泛函(TD-B3P86)方法研究了SnS分子在外场下的激发特性.结果表明,在所加的电场范围内(-0.04 a.u.-0.04 a.u.),随着正向电场的增大,分子键长和红外谱强度均是先减小后增大;总能E,SnS基态分子的最高已占据轨道能量EH和谐振频率均是先增大后减小;分子的最低未占空轨道能量EL和能隙Eg均随正向电场的增大而减小.随着正向电场的增大,SnS分子由基态至前9个单重激发态跃迁的波长增大,激发能则减小.  相似文献   

15.
The magnetic field induced transition energies between the ground and excited states of a donor impurity in a Ga1-xAlxAs /Ga1-yAlyAs corrugated quantum well is reported. The calculations are performed by the variational method based on a two-parametric trial wave function, in the framework of the single band effective mass approximation. The effect of nonparabolicity of the conduction band is considered through the energy dependent effective mass. The effect of magnetic field on the spin-orbit interaction on the electron magnetization and the magnetic susceptibility is discussed. The diamagnetic susceptibility using Hellmann-Feynman theorem is calculated for the ground and excited states of the donor. The transition lines lie in the optical range for a strong magnetic field. The results are compared with the other existing available literature.  相似文献   

16.
A theory of time-dependent nonlinear dispersive equations of the Schr?dinger or Gross-Pitaevskii and Hartree type is developed. The short, intermediate and large time behavior is found, by deriving nonlinear master equations (NLME), governing the evolution of the mode powers, and by a novel multitime scale analysis of these equations. The scattering theory is developed and coherent resonance phenomena and associated lifetimes are derived. Applications include Bose-Einstein condensate large time dynamics and nonlinear optical systems. The theory reveals a nonlinear transition phenomenon, "selection of the ground state," and NLME predicts the decay of excited state, with half its energy transferred to the ground state and half to radiation modes. Our results predict the recent experimental observations of Mandelik et al. in nonlinear optical waveguides.  相似文献   

17.
We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.  相似文献   

18.
We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.  相似文献   

19.
抛物量子点中强耦合磁极化子的性质   总被引:5,自引:3,他引:2  
陈时华  肖景林 《发光学报》2004,25(4):344-348
采用Pekar类型的变分方法研究了抛物量子点中强耦合磁极化子的基态和激发态的性质。计算了基态和激发态磁极化子的束缚能以及磁极化子的共振频率。讨论了这些量对回旋频率和有效限制强度的依赖关系,以及磁极化子光学声子平均数的性质,结果表明:由于Zeeman劈裂,抛物量子点中磁极化子的回旋共振频率劈裂为两支。基态和激发态磁极化子的束缚能以及磁极化子的共振频率都随回旋频率的增加而增大,随量子点的有效束缚强度的增大而减小。  相似文献   

20.
We investigated the combined effects of a non-resonant intense laser field and a static electric field on the electronic structure and the nonlinear optical properties (absorption, optical rectification) of a GaAs asymmetric double quantum dot under a strong probe field excitation. The calculations were performed within the compact density-matrix formalism under steady state conditions using the effective mass approximation. Our results show that: (i) the electronic structure and optical properties are sensitive to the dressed potential; (ii) under applied electric fields, an increase of the laser intensity induces a redshift of the optical absorption and rectification spectra; (iii) the augment of the electric field strength leads to a blueshift of the spectra; (iv) for high electric fields the optical spectra show a shoulder-like feature, related with the occurrence of an anti-crossing between the two first excited levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号