首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant were achieved on TiO2 nanotube electrodes with double purposes of environmental protection and renewable energy production under illumination of simulated solar light. The TiO2 nanotube arrays (TiO2 NTs) were fabricated by a two-step anodization method. The TiO2 NTs prepared in two-step anodization process (2-step TiO2 NTs) showed much better surface smoothness and tube orderliness than TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). In the photoelectrochemical water splitting and simultaneous photoelectrocatalytic decomposition process, the 2-step TiO2 NTs electrode showed both highest photo-conversion efficiency of 1.25% and effective photodecomposition efficiency with existing of methylene blue (MB) as sacrificial agent and as pollutant target. Those results implied that the highly ordered nanostructures provided direct pathway and uniform electric field distribution for effective charges transfer, as well as superior capabilities of light harvesting.  相似文献   

2.
Novel electrocatalysts Au/TiO2 nanotube arrays (Au/TiO2NTs) were prepared by loading low-content(1.9 at.%) of Au nanoparticles (AuNPs) onto highly ordered TiO2 nanotube arrays (TiO2NTs). Ethanol electrooxidation indicates that visible-light (λ > 400 nm) irradiation can significantly enhance the activity as well as resistpoisoning of Au/TiO2NTs electrocatalysts that are activated by plasmon resonance. Au/TiO2NTs catalysts calcinated at 300 °C display the highest performance due to the strong synergistic interactions between TiO2 and Au NPs. The combination of visible-light irradiation with a controllable potential offers a new strategyfor enhancing the performance of anodes in direct ethanol fuel cell (DEFC).  相似文献   

3.
In this work, CdS sensitized TiO2 nanotube arrays (CdS/TiO2NTs) electrode was synthesized with the CdS deposition on the highly ordered titanium dioxide nanotube arrays (TiO2NTs) by sequential chemical bath deposition method (S‐CBD). The as‐prepared CdS/TiO2NTs was characterized by field‐emission scanning electron microscopy (FE‐SEM) and X‐ray diffraction (XRD). The results indicated that the CdS nanoparticles were effectively deposited on the surface of TiO2NTs. The amperometric It curve on the CdS/TiO2NTs electrode was also presented. It was found that the photocurrent density was enhanced significantly from 0.5 to 1.85 mA/cm2 upon illumination with applied potential of 0.5 V at the central wavelength of 253.7 nm. The photoelectrocatalytic (PEC) activity of the CdS/TiO2NTs electrode was investigated by degradation of methyl orange (MO) in aqueous solution. Compared with TiO2NTs electrode, the degradation efficiencies of CdS/TiO2NTs electrode increased from 78% to 99.2% under UV light in 2 h, and from 14% to 99.2% under visible light in 3 h, which was caused by effective separation of the electrons and holes due to the effect of CdS, hence inhibiting the recombination of electron/hole pairs of TiO2NTs.  相似文献   

4.
La-doped TiO2 nanotubes (La/TiO2 NTs) were prepared by the combination of sol-gel process with hydrothermal treatment. The prepared samples were characterized by using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectra, and ultraviolet-visible spectra. The photocatalytic performance of La/TiO2 NTs was studied by testing the degradation rate of methyl orange under ultraviolet (UV) irradiation. The results indicated La/TiO2 NTs calcined at 300°C consisted of anatase as the unique phase. The absorption spectra of the La/TiO2 NTs showed a stronger absorption in the UV range and a slight red shift in the band gap transition than that of pure TiO2 nanotubes. The photocatalytic performance of TiO2 NTs could be improved by the doping of lanthanum ions, which is ascribed to several beneficial effects the formation of Ti-O-La bond and charge imbalance, existing of oxygen defects and Ti3+ species, stronger absorption in the UV range and a slight red shift in the band gap transition, as well as higher equilibrium dark adsorption of methyl orange. 0.75 wt% La/TiO2 NTs had the best catalytic activity.  相似文献   

5.
TiO2 nanotube (NT) arrays have been prepared by anodic oxidation of a Ti sheet, and carbon-deposited TiO2 NT arrays have been prepared by annealing TiO2 NT arrays in carbon atmosphere. The biocompatibility of the as-prepared NT arrays was investigated by observing the growth of osteosarcoma (MG-63) cells on the NT arrays. The application of the TiO2 NT arrays as a drug delivery vehicle was investigated. Both the TiO2 NTs and the carbon-modified TiO2 NTs have good biocompatibility supporting the normal growth and adhesion of MG-63 cells with no need of extracellular matrix protein coating. The one end-opened TiO2 NTs can be easily filled with drugs, working as an efficient drug delivery vehicle.  相似文献   

6.
The present work is focused on developing a novel biomaterial platform to achieve enhanced direct electron transfer (DET) of hemoprotein and higher biosensor performance on vertically aligned carbon hybrid TiO2 nanotubes (C‐TiO2 NTs). Using a simple surfactant‐assisted method, controllable hybridization of TiO2 NTs with conductive amorphous carbon species is realized. The obtained C‐TiO2 NTs is ingeniously chosen to serve as an ideal "vessel" for protein immobilization and biosensor applications. Results show that the appropriate hybridization of C into TiO2 NTs leads to a much better conductivity of TiO2 NTs without destroying their preponderant tubular structures or damaging their excellent biocompatibility and hydrophilicity. When used in loading proteins, the C‐TiO2 NTs can be used as a super vessel for rapid and substantive immobilization of hemoglobin (Hb), with a large surface electroactive Hb coverage ( Γ ??) of 3.3×10?9 mol·cm?2. Enhanced DET of Hb is commendably observed on the constructed Hb/C‐TiO2 NTs biosensor with a couple of well‐defined redox peaks in a fast electron transfer process. The biosensor further exhibits fast response, high sensitivity and stability for the amperometric biosensing of H2O2 with the detection limit as low as 3.1×10?8 mol/L.  相似文献   

7.
《Analytical letters》2012,45(6):1114-1125
The photocatalytic oxidation of ethanol over TiO2 nanotubes (NTs) was investigated by in situ attenuated total reflection using Fourier transform infrared spectroscopy (ATR-FTIR) and ultraviolet (UV)-visible spectroscopy. In the ATR-FTIR study, the TiO2 NTs were spread in a ZnSe crystal trough that was used as the reactor. The evolution of the reaction under UV irradiation was investigated by in situ monitoring of changes in the species at the surface of the TiO2 NTs. Ethanol adsorbed on the TiO2 NTs surface, forming alkoxide and hydroxide groups, which were then attacked by ?OH, with the formation of a vinyl alcohol intermediate that was finally transformed to acetic acid. In addition, the species changes in the reaction solution were also investigated by in situ UV-visible spectroscopy using a small volume flow-through cell. The UV-visible data further confirmed the oxidation mechanism of ethanol on TiO2 NTs elucidated by ATR-FTIR data.  相似文献   

8.
A constant current electrochemical deposition was employed to incorporate CdS nanoparticles into the TiO2 nanotube arrays (TiO2NTs). The size and amount of CdS nanoparticles in TiO2NTs (CdS@TiO2NTs) were controllable via modulating current, deposition time and electrolyte concentration. It was revealed, from the scanning electron microscopy (SEM) images and X-ray photoelectron spectroscopy (XPS) in depth profile, that CdS nanoparticles were filled into TiO2 nanotubes. A shift of the absorption edge toward the visible region under the optimal electrodeposition condition was observed with the diffuse reflectance spectroscopy (DRS). A 5-fold enhancement in the photocurrent spectrum for TiO2NTs was observed and the photocurrent response range was significantly extended into the visible region because of the CdS incorporation. Compared with pure TiO2NTs, under a visible light irradiation, CdS@TiO2NTs exhibited a 3.5-fold improvement of photocatalytic activity, which was demonstrated by the photocatalytic decomposition of Rhodamine B (RhB).  相似文献   

9.
A C–N-doped TiO2 nanotube (NT)/carbon nanorod composite is fabricated by chemical vapor deposition (CVD). Carbon nanorods are grown from the TiO2 NTs, and partly graphitized, while TiO2 is in the mixture of anatase and rutile. The C–N doping shifts the absorption edge of TiO2 NTs to the visible light region; the formed carbon nanorods promote the charge carrier transfer from the TiO2 surface to the electrolyte. Under the simulated solar light irradiation, the C–N-doped TiO2 NTs show higher photocatalytic activity in the degradation of methyl orange (MO) than the undoped TiO2 NTs.  相似文献   

10.
Gold nanoparticle (Au‐NPs)‐Titanium oxide nanotube (TiO2‐NTs) electrodes are prepared by using galvanic deposition of gold nanoparticles on TiO2‐NTs electrodes as support. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy results indicate that nanotubular TiO2 layers consist of individual tubes of about 60–90 nm diameters and gold nanoparticles are well‐dispersed on the surface of TiO2‐NTs support. The electrooxidation of hydroquinone of Au‐NPs/TiO2‐NTs electrodes is investigated by different electrochemical methods. Au‐NPs/TiO2‐NTs electrode can be used repeatedly and exhibits stable electrocatalytic activity for the hydroquinone oxidation. Also, determination of hydroquinone in skin cream using this electrode was evaluated. Results were found to be satisfactory and no matrix effects are observed during the determination of hydroquinone content of the “skin cream” samples.  相似文献   

11.
A novel method for homogenous incorporation of Ru (RuO2, or RuO3) into high aspect ratio anodic TiO2 NTs was studied. TiO2 NTs were prepared by anodization in HF based electrolyte, after which very short high applied potential, referred to as potential shock, was imposed on the TiO2 NTs in KRuO4 electrolyte. The high potential shock induced massive flow of RuO4 to positively-biased TiO2 NTs, resulting in the incorporation of Ru as a form of Ru, RuO2, and RuO3 in the TiO2 NTs. Optimal potential shock, which allowed the most suitable amount and incorporation state of Ru catalysts in TiO2 NTs, was determined by SEM, TEM, EDS, XPS, and LSV. It was demonstrated that electrochemical potential shock (simply imposed on the anodic TiO2 for a few seconds in the electrolyte of KRuO4) resulted in homogenous incorporation of Ru into the whole nanotubes without the need for any complicated steps or facilities.  相似文献   

12.
The degradation of ofloxacin (OFX) at low concentration in aqueous solution by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cells (UVA-LED/TiO2 NTs PFCs) was investigated. TiO2 nanotube arrays (TiO2 NTs) photoanode prepared by anodization-constituted anatase–rutile bicrystalline framework. The results indicated that the degradation efficiency of OFX by UVA-LED/TiO2 NTs PFC was significantly enhanced by 14.3% compared with UVA-LED/TiO2 NTs photocatalysis. The pH affected the degradation efficiency markedly; the highest degradation efficiency (95.0%) and the pseudo-first-order reaction rate constant k value (0.049 min?1) were achieved in neutral condition (pH 7.0). The degradation efficiency increased with the increasing concentration of dissolved oxygen (DO) in the UVA-LED/TiO2 NTs PFC. The main reactive species of OFX degradation are positive holes (h+) and superoxide ion radicals (O 2 ·? ) in a DO sufficient condition. Furthermore, the possible pathways of OFX degradation were proposed.  相似文献   

13.
We report the photothermal properties as well as the in vitro cell test results of titanium oxide nanotubes (TiO2 NTs) as a potential therapeutic agent for cancer thermotherapy in combination with near-infrared (NIR) light. TiO2 NTs are found to have a higher photothermal effect upon exposure to NIR laser than Au nanoparticles and single-wall carbon nanotubes, which have also attracted considerable interest as therapeutic agents for cancer thermotherapy. The temperature increase of a TiO2 NT/NaCl suspension during NIR laser exposure is larger than that of a TiO2 NT/D.I. water suspension due to the heat generated by the formation of Na2TiF6. According to the in vitro cell test results the cells exposed to NIR laser without TiO2 NT treatment have a cell viability of 96.4%. Likewise, the cells treated with TiO2 NTs but not with NIR irradiation also have a cell viability of 98.2%. Combination of these two techniques, however, shows a cell viability of 1.35%. Also, the cell deaths are mostly due to necrosis but partly due to late apoptosis. These results suggest that TiO2 NTs can be used effectively as therapeutic agents for cancer thermotherapy due to their excellent photothermal properties and high biocompatibility.  相似文献   

14.
用浸渍-分解法将Bi2O3纳米颗粒沉积在TiO2纳米管壁上, 制备了Bi2O3/TiO2纳米管阵列. 用电感耦合等离子体发射光谱(ICP-AES)测定了Bi2O3/TiO2 纳米管阵列的化学组分, 利用X 射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和紫外-可见(UV-Vis)吸收光谱表征了所制备的样品. 通过在可见光下(λ>400 nm)降解甲基橙(MO)水溶液来评价样品的光催化活性. 结果表明, Bi2O3纳米颗粒均匀地沉积在TiO2纳米管中. Bi2O3/TiO2纳米管阵列具有比纯Bi2O3膜和N-TiO2纳米管阵列高得多的可见光催化活性. Bi2O3/TiO2纳米管阵列活性的增强是其强可见光吸收和Bi2O3与TiO2之间形成的异质结的协同作用的结果.  相似文献   

15.
B-doped TiO2 nanotubes (B/TiO2 NTs) were prepared by the combination of sol–gel process with hydrothermal treatment. The prepared catalysts were characterized by XRD, TEM and XPS. The photocatalytic activity of B/TiO2 NTs was evaluated through the photodegradation of aqueous methyl orange. The results demonstrated that the 1.5% B/TiO2 NTs calcined at 300 °C possessed the best photocatalytic activity. Compared with pure TiO2 nanotubes, the doping with B significantly enhanced the photocatalytic efficiency.  相似文献   

16.
Summary Gold-, gold and copper-doped TiO2 nanotubes (Au/TiO2 NTs, Au-Cu/TiO2 NTs) are prepared by impregnation-reduction method. The doped nanotubes are characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Their catalytic performance for CO oxidation is also examined  相似文献   

17.
Self-organized TiO2 nanotubes (NTs) can be formed by electrochemical anodization. Anodization is generally performed in aqueous or organic electrolytes containing halogen ions, such as Cl and F. However, these electrolytes lead to less ordered structures or carbon remnants, thus suppressing the electrical properties and limiting the applications. To overcome these limitations, new anodization approaches were performed in carbon-free electrolyte-based electrolyte. In this review, we summarizes the short history of TiO2 NTs, general mechanisms of growing NTs, properties, and applications of classic TiO2 NTs. Then, a new-generation of anodization approach conducted in molten orhto-phosphoric acid is elucidated based on anodization parameters, concluding the optimized condition to form highly ordered TiO2 NT arrays. Finally, the review addresses further modifications such as heat-treatment, noble metal deposition, thermal dewetting, and double anodization to enhance the optical and electrical properties for use in various applications.  相似文献   

18.
In this study, we synthesized Tb/Tourmaline/TiO2 nano tubes (NTs) through a solgel-hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectromicroscope, scanning electron microscopy, transmission electron microscopy and UV-vis diffuse reflectance spectroscopy. The resulting Tb/Tourmaline/TiO2 NTs exhibited higher photocatalytic activity than pure TiO2 and TiO2 nano particles (NPs) in the degradation of menthyl orange under UV-light. Results revealed that doping rare earth element Tb could narrow the wide band gap of TiO2 and tourmaline could trap the photogenerated electron of TiO2 to inhibit the recombination of photogenerated electron-hole pairs.  相似文献   

19.
采用水合肼(N2H4·H2O)作为还原剂,在液相环境中制备了自掺杂TiO2纳米管阵列(NTs)。利用FE-SEM、EDS、XPS、XRD、Raman、UV-Vis/NIR分光光度法以及半导体特性分析系统(Keithley 4200 SCS)分别对样品的形貌,晶体结构,光学特性以及电学性能进行了表征。结果表明:通过这种方法制备的自掺杂TiO2NTs在带隙中引入了大量的氧空位,创造了氧空位能级,从而提高了样品的电导率,有效提高光生电子-空穴对的产生、分离和传输。此外,由于氧空位的作用,使得TiO2NTs的带隙变窄,增强了可见光吸收能力,致使样品具有较高的光催化活性,并通过降解甲基橙溶液对样品的光催化活性进行评估。结果显示当光照150min后,自掺杂TiO2NTs对甲基橙溶液的降解率达73%,并且这种催化剂便于回收和重复使用。  相似文献   

20.
To improve the service life of SnO2?Sb electrodes in degradation of refractory wastewater, we report anodic information of tin oxide antimony on top of Nb?TiO2 nanotubes (Nb?Ti/Nb?TiO2?NTs/ATONPs) prepared through screen‐printing. It was found that the Nb?Ti/Nb?TiO2?NTs/ATONPs anodes presented a significantly enhanced in electro‐catalytic oxidation performance (in Acid Red 73) compared to titanium‐based tin antimony electrodes (Ti/ATONPs). Additionally, the electrochemical properties and the stability were further studied by the electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), cyclic voltammetry (CV), chronoamperometry (CA) measurements and accelerated life test, respectively. These results indicated that Nb?TiO2?NTs/ATONPs anode possessed Nb?TiO2 nanotubes which exhibited a higher oxygen evolution potential (2.24 V vs. Ag/AgCl), as well as a better wettability, a larger current at constant potential and 2.1 times longer lifetime than the conventional Ti/ATONPs anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号