首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microwave digestion method in a closed vessel was developed for the determination of trace metals in atmospheric aerosols using inductively coupled plasma mass spectrometry (ICP-MS). A recovery study for the elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, and Pb was conducted using multi-elemental standard solutions, NIST 1633b Trace Elements in Coal Fly Ash, and NIST 1648 Urban Particulate Matter. A simple digestion method using only HNO3/H2O2 gave good recoveries (90%–108%) for all elements except Cr in SRM 1648, but yielded low recoveries for SRM 1633b. A more robust method using HNO3/H2O2/HF/H3BO3 yielded higher recoveries (82%–¶103%) for the lighter elements (V – Zn) in SRM 1633b, and improved the Cr recovery in SRM 1648, but decreased the Se recovery in both SRMs. A comparative analysis of aerosol samples obtained at a remote mountain location Nathiagali, Pakistan (2.5 km above mean sea level), and Mayville, New York, downwind from the highly industrialized Midwestern United States, was carried out using Instrumental Neutron Activation Analysis (INAA) for the elements Cr, Mn, Fe, Co, Zn, As, Se, and Sb. The simple digestion method yielded excellent agreement for Cr, Fe, Zn, As, Se, and Sb, with slopes of the ICP-MS vs. INAA regressions of 0.90–1.00 and R2 values of 0.96–1.00. The regressions for Mn and Co had slopes of 0.82 and 0.84 with R2 values of 0.83 and 0.82, respectively. Addition of HF/H3BO3 did not improve the correlation for any of the elements and degraded the precision somewhat. The technique provides sensitivity and accuracy for trace elements in relatively small aerosol samples used in atmospheric chemistry studies related to SO2 oxidation in cloud droplets. The ability to determine concentrations of a very large number of elements from a single analysis will permit source apportionment of various trace pollutants and hence strategies to control the sources of air pollution. This is particularly important as the health effects of particulate matter are increasingly recognized.  相似文献   

2.
A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for 35Cl+ to more than 6 × 105 cps for 238U+ for 1 μg of trace element per gram of coal sample. Detection limits vary from 450 ng g−1 for chlorine and 18 ng g−1 for sulfur to 9.5 pg g−1 for mercury and 0.3 pg g−1 for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis. Figure LA-ICP-IDMS allows direct multi-element determination in powdered coal samples  相似文献   

3.
Isotope ratio measurements characterizing 202Hg/200Hg in NIST SRM 3133 Mercury Standard Solution were undertaken by multicollector inductively coupled plasma mass spectrometry employing NIST SRM 997 Tl for mass bias correction by use of the slope and the intercept obtained from a natural logarithmic plot of each session of measurements of 202Hg/200Hg against 205Tl/203Tl. The calculated value of 1.285333 ± 0.000192 (mean and one standard deviation, n = 40) for the mass bias corrected 202Hg/200Hg was then used for mass bias correction of other Hg isotope pairs. Ratios of 0.015337 ± 0.000011, 1.68770 ± 0.00054, 2.3056 ± 0.0015, 1.3129 ± 0.0013, 2.9634 ± 0.0038, and 0.67937 ± 0.0013 (expanded uncertainty, k = 2) were obtained for 196Hg/198Hg, 199Hg/198Hg, 200Hg/198Hg, 201Hg/198Hg, 202Hg/198Hg, and 204Hg/198Hg, respectively. Reduction of Hg(II) to Hg0 in solutions of SRM 3133 was then undertaken using SnCl2, NaBH4, UV photolysis in the presence of formic acid, and ethylation of Hg(II) using NaBEt4. These reactions induced significant isotope fractionation with maximum values of 1.17 ± 0.07, 1.08 ± 0.09, 1.34 ± 0.07, and 3.59 ± 0.09‰ (one standard deviation, 1SD, n = 5) for δ 202/198Hg relative to the initial isotopic composition in the solution following 85–90% reduction of the Hg by SnCl2, NaBH4, UV photolysis, and ethylation with NaBEt4, respectively. Mass-dependent fractionation was found to be dominant for all reduction processes. Figure Mass dependence of fractionation for all samples from Hg fractionation experiments using NaBEt4. Solid lines are the theoretically predicted MDF based on δ202/198 Hg using equation 7. Error bars displayed are one standard deviation of the mean of 5 measurements of each sample  相似文献   

4.
 Traces of uranium and thorium in barium(II), strontium(II) titanate ((Ba, Sr)TiO3) ferroelectric materials were determined by inductively coupled plasma mass spectrometry (ICP-MS). Samples were completely dissolved by a mixture of 1.4% H2O2 and 1.0 mol⋅l-1 HNO3. For a complete separation of the analytes from the matrix elements, a two step separation technique involving leaching and anion-exchange was applied. By the leaching step with HNO3 more than 90% of the matrix can be removed whereas the analytes completely remained in the solution. The anion-exchange step was carried out on a BIO⋅RAD AG1-X8 column with a mixture of 1.0 mol⋅l-1 HF and 0.5 mol⋅l-1 HNO3 as eluent. The content of uranium and thorium was subsequently measured by ICP-MS. The detection limits (D.L.) obtained were 0.043 ng g-1 and 0.035 ng g-1 for U and Th, respectively. The reproducibility was satisfactory with a relative standard deviation of less than 3% (at the 1 ng g-1 level, n=5). The matrix concentrations in the final solution were reduced to the sub-μg ml-1 level which is in the range of the detection limits of USN-ICP-AES (ultrasonic nebulization-ICP-atomic emission spectroscopy). The method was successfully applied to the determination of uranium and thorium in three synthetic (Ba, Sr)TiO3 samples spiked with the analytes at levels of 1, 5 and 10 ng g-1 and three (Ba, Sr)TiO3 ferroelectric samples containing sub-ng g-1 levels of the analytes. Received: 26 February 1996/Revised: 28 May 1996/Accepted: 5 June 1996  相似文献   

5.
 Traces of uranium and thorium in barium(II), strontium(II) titanate ((Ba, Sr)TiO3) ferroelectric materials were determined by inductively coupled plasma mass spectrometry (ICP-MS). Samples were completely dissolved by a mixture of 1.4% H2O2 and 1.0 mol⋅l-1 HNO3. For a complete separation of the analytes from the matrix elements, a two step separation technique involving leaching and anion-exchange was applied. By the leaching step with HNO3 more than 90% of the matrix can be removed whereas the analytes completely remained in the solution. The anion-exchange step was carried out on a BIO⋅RAD AG1-X8 column with a mixture of 1.0 mol⋅l-1 HF and 0.5 mol⋅l-1 HNO3 as eluent. The content of uranium and thorium was subsequently measured by ICP-MS. The detection limits (D.L.) obtained were 0.043 ng g-1 and 0.035 ng g-1 for U and Th, respectively. The reproducibility was satisfactory with a relative standard deviation of less than 3% (at the 1 ng g-1 level, n=5). The matrix concentrations in the final solution were reduced to the sub-μg ml-1 level which is in the range of the detection limits of USN-ICP-AES (ultrasonic nebulization-ICP-atomic emission spectroscopy). The method was successfully applied to the determination of uranium and thorium in three synthetic (Ba, Sr)TiO3 samples spiked with the analytes at levels of 1, 5 and 10 ng g-1 and three (Ba, Sr)TiO3 ferroelectric samples containing sub-ng g-1 levels of the analytes. Received: 26 February 1996/Revised: 28 May 1996/Accepted: 5 June 1996  相似文献   

6.
NIST standard reference material SRM 2783 was employed to validate a high temperature, high pressure, two-stage microwave assisted acid digestion procedure using HNO3, HF and H3BO3 developed for the analysis of trace elements (including rare earths) in atmospheric fine particulate matter (PM2.5) prior to inductively coupled plasma mass spectrometry (ICP-MS). This method quantitatively solubilized Na, Mg, Al, K, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sb, Cd, Cs, Ba, Pb, Th, U and several rare earth elements (REEs) (La, Ce, Pr, Nd, Gd, Dy, Er, Sm and Eu) from SRM 1648 and SRM 2783. A small amount of HF in the first stage was required to dissolve silicates necessitating the corresponding addition of H3BO3 in second stage to dissolve fluoride precipitates of Mg, La, Ce and Th. The optimized microwave dissolution—ICP-MS method detected Na, Mg, Al, K, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Mo, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Gd, Pb, Th and U at trace to ultra-trace levels in ambient airborne fine particles from three sites in North Carolina. La to light lanthanide signature ratios suggested that soil and motor vehicles are the dominant REE sources in SRM 2783 and PM2.5 samples collected during this study.  相似文献   

7.
A flow-injection analysis atomic absorption spectrometric (FIA-AAS) method was developed for the determination of trace amounts of arsenic, selenium and mercury in a proposed estuarine sediment standard reference material (SRM 1646a). The samples were prepared in two manners: a) A wet digestion procedure with HNO3, H2SO4, and HClO4 using a reflux column and b) A microwave-oven digestion procedure utilizing HNO3, H2SO4, and HCl for As and Se, and HNO3 for Hg. Microwave-oven digestion provides results comparable to those found by reflux column digestion and reduces the sample preparation time by a factor of 10. The proposed method employing the microwave-oven digestion procedure coupled with FIA-AAS for As and Se, and FIA-CVAAS for Hg, has detection limits of 0.15 ng As/ml, O.17 ng Se/ml and 0.15 ng Hg/ml.On leave from the Defense Metallurgical Research Laboratory, Hyderabad, India  相似文献   

8.
Inductively coupled plasma optical emission spectrometry (ICP OES) was used to determine Mo, Cr, V and Ti, in diesel and in used fuel oil. Samples were introduced into the ICP as emulsions to reduce interferences and allow the use of inorganic standards for quantification. A comparative study between one Triton X-100 emulsion and one detergentless emulsion was made. A 23 factorial design was applied to elucidate and establish the relationship between three experimental variables: presence of HNO3, amount of diesel fuel oil (between 5 and 25%) and the presence or O2 into the Ar plasma gas flow rate. Results indicated that best performance were achieved using 10% sample (w/w) together with concentrated HNO3 (0.5 mL) and using O2 as auxiliary gas (0.047 L min−1). The use of O2 minimized both carbon deposits at the injector tip and plasma background. The addition of HNO3 resulted in good correlation between inorganic standards used for calibration, and metallo-organic standards used for sample enrichment. Analyte enriched diesel and SRM 1634b were analyzed using the optimized conditions. Recoveries from 90.1 to 106.5% were achieved, with better results for detergent emulsions which enabled limits of detection at the ng g−1 range for Mo, Cr, V and Ti and at smaller background.  相似文献   

9.
A low pressure microwave assisted vapor phase dissolution procedure for silicon nitride and volatilization of in situ generated SiF4 has been developed using H2SO4, HF and HNO3 for the determination of trace impurities present in silicon nitride. Sample was taken in minimum amount (0.5 mL for 100 mg) of H2SO4 and treated with vapors generated from HF and HNO3 mixture in presence of microwaves in a closed container. An 80 psi pressure with ramp and hold times of 30 min and 60 min respectively, operated twice, resulted in 99.9% volatilization of Si. Matrix free solutions were analyzed for impurities using DRC-ICP-MS. The recoveries of Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Y, Cd, Ba and Pb were between 80 and 100% after volatilization of Si. The blanks were in lower ng g−1 with method detection limits in lower ng g−1 to sub ng g−1 range. The method was applied for the analysis of two silicon nitride samples.  相似文献   

10.
A study was undertaken to evaluate whether the fairy shrimpChirocephalus diaphanus(Crustacea: Anostraca) could be considered as a species capable of biomonitoring environmental contamination by accumulating trace elements. This preliminary investigation aimed at assessing the levels of As, Cd, Cu, Hg, Pb, Se, and Zn in natural waters as well as in adults and cysts of fairy shrimps sampled from five different sites in central Italy. Trace elements were determined by inductively coupled plasma (ICP)-based spectrometry. In particular, ICP–mass spectrometry (ICP-MS) was resorted to in most cases due to its high detection power. Pretreatment of samples (adults and cysts) consisted basically in the HNO3-assisted microwave digestion of the material. The highest levels of trace elements were found in the anostracan cysts, with concentration ranges (μg/g) of 0.464–3.11 for As, up to 0.820 for Cd, 2.62–13.0 for Cu, 0.011–0.213 for Hg, 0.966–8.46 for Pb, 0.295–2.45 for Se, and 16.4–50.4 for Zn. On the other hand, the lowest concentrations were found in natural waters, with values close to the ICP-MS detection power for some elements. These data are probative of a bioconcentration process, the extent of which is proportional to the environmental level of each element. This may turn out to be useful in planning biological monitoring and assessing ecotoxicological consequences which might ensue from the diffusion of the exploitation of such organisms in aquaculture.  相似文献   

11.
 Column solid-phase extraction using TiO2 (anatase) as a solid sorbent was applied to preconcentrate traces of Cd, Co, Cu, Fe, Mn, Ni and Pb from AR grade alkali salts prior to their measurements by atomic absorption spectrometry (AAS). Multi-element preconcentration was achieved from NaCl, KCl, KNO3, NaNO3, CH3COONa, NaHCO3 and Na2CO3 solutions, whereas the sorption of trace elements from phosphates and sulfates is not quantitative. Optimal conditions (recoveries of the analytes >95%) for solid-phase co-extraction of the most common heavy metal ions are proposed. The conditions for quantitative and reproducible elution and subsequent AAS are established. A method of determination of trace elements in different salts is proposed. It is characterized by precision, reproducibility and a high preconcentration factor. The solid-phase extraction by TiO2, combined with ETAAS allows the determination of 0.1 ng g-1 Cd, 2 ng g-1 Co, 1 ng g-1 Cu and Ni, 0.5 ng g-1 Mn and 0.4 ng g-1 Pb. Received: 1 April 1996/Revised: 24 June 1996/Accepted: 9 July 1996  相似文献   

12.
Selenium is a trace element of environmental relevance. Studies on its solution chemistry are scarce and were mostly carried out under experimental conditions of little relevance to environmental research. Thus, we have performed new studies of selenium speciation in solutions of low ionic strength, in contrast to those prevailing in the literature data. In this work, potentiometric titrations (at 20.0 °C, and I=0.15 mol⋅L−1 NaClO4) were carried out for systems containing Se(VI) or Se(IV) oxyanions and divalent metal ions (Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg, and Pb). Ion pairs such as [M(SeO4)] and [M(HSeO4)2], or [M(HSeO3)]+ and [M(SeO3)], exist in solutions. The data reported here provide the basis for determining selenium speciation in natural aquatic systems, on which the bioavailability and toxicity of this element depends.  相似文献   

13.
A hydride generation (HG) procedure has been described for determination of Pb by ICP-MS using potassium hexacyanomanganate(III), K3Mn(CN)6, as an additive to facilitate the generation of plumbane (PbH4). Potassium hexacyanomanganate(III) was prepared in acidic medium as it was unstable in water. The stability of hexacyanomanganate(III) was examined in dilute solutions of HCl, HNO3 and H2SO4. The solutions prepared in 1% v/v H2SO4 were found to be stable for over a period of 24 h. The least suitable medium was 1% v/v HNO3. For generation of plumbane, acidic hexacyanomanganate(III) and sample solutions were mixed on-line along a 5-cm long tygon tubing (1.14 mm i.d.) and then reacted with 2% m/v sodium borohydride (NaBH4). A concentration of 0.5% m/v K3Mn(CN)6 facilitated the generation of PbH4 remarkably. In comparison to H2SO4, HCl provided broader working range for which optimum concentration was 1% v/v. No significant interferences were noted from transition metals and hydride forming elements, up to 0.5 μg mL−1 levels, except Cu which depressed the signals severely. The depressive effects in the presence of 0.1 μg mL−1 Cu were alleviated by increasing the concentration of K3Mn(CN)6 to 2% m/v. Under these conditions, the sensitivity was enhanced by a factor of at least 42 to 48. The detection limit (3 s) was 0.008 μg L−1 for 208Pb isotope. Average signal-to-noise ratio (S/N) ranged between 18 and 20 for 1.0 μg mL−1 Pb solution. The accuracy of the method was verified by analysis of several certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), and Mussel tissue (SRM 2976). The procedure was also successfully applied to the determination of Pb in coastal seawater samples by ICP-MS.  相似文献   

14.
High-performance liquid chromatography (HPLC) coupled to an ICP-MS with an octapole reaction system (ORS) has been used to carry out quantitative speciation of selenium (Se) and arsenic (As) in the stream waters of a refining process. The argon dimers interfering with the 78Se and 80Se isotopes were suppressed by pressurizing the octapole chamber with 3.1 mL min−1 H2 and 0.5 mL min−1 He. Four arsenic species arsenite—As(III), arsenate (As(V)), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)—and three inorganic Se species—selenite Se(IV), selenate Se(VI), and selenocyanate (SeCN)—were separated in a single run by ion chromatography (IC) using gradient elution with 100 mmol L−1 NH4NO3, pH 8.5, adjusted by addition of NH3, as eluent. Repeatabilities of peak position and of peak area evaluation were better than 1% and about 3%, respectively. Detection limits (as 3σ of the baseline noise) were 81, 56, and 75 ng L−1 for Se(IV), Se(VI), and SeCN, respectively, and 22, 19, 25, and 16 ng L−1 for As(III), As(V), MMA, and DMA, respectively. Calibration curve R 2 values ranged between 0.996 and 0.999 for the arsenic and selenium species. Column recovery for ion chromatography was calculated to be 97 ± 6% for combined arsenic species and 98 ± 3% for combined selenium species. Because certified reference materials for As and Se speciation studies are still not commercially available, in order to check accuracy and precision the method was applied to certified reference materials, BCR 714, BCR 1714, and BCR 715 and to two different refinery samples—inlet and outlet wastewater. The method was successfully used to study the quantitative speciation of selenium and arsenic in petroleum refinery wastewaters.  相似文献   

15.
The determination of trace elements in oil samples and their products is of high interest as their presence significantly affects refinery processes and the environment by possible impact of their combustion products. In this context, inductively coupled plasma mass spectrometry (ICP-MS) plays an important role due to its outstanding analytical properties in the quantification of trace elements. In this work, we present the accurate and precise determination of selected heavy metals in oil samples by making use of the combination of μ-flow direct injection and isotope dilution ICP-MS (ICP-IDMS). Spike solutions of 62Ni, 97Mo, 117Sn and 206Pb were prepared in an organic solvent, mixed directly with the diluted oil samples and tested to be fit for purpose for the intended ID approach. The analysis of real samples revealed strong matrix effects affecting the ICP-MS sensitivity, but not the isotope ratio measurements, so that accurate results are obtained by ICP-IDMS. Typical relative standard deviations were about 15% for peak area and peak height measurements, whereas the isotope ratios were not significantly affected (RSD < 2%). The developed method was validated by the analysis of a metallo-organic multi-element standard (SCP-21, typically applied as a calibration standard) and the standard reference material SRM1084a (wear metals in lubricating oil). The obtained results were in excellent agreement with the certified values (recoveries between 98% and 102%), so the proposed methodology of combining μ-flow direct injection and ICP-IDMS can be regarded as a new tool for the matrix-independent, multi-element and reliable determination of trace elements in oil and related organic liquids.  相似文献   

16.
A microwave digestion method suitable for determination of multiple elements in marine species was developed, with the use of cold vapor atomic spectrometry for the detection of Hg, and inductively coupled plasma mass spectrometry for all of the other elements. An optimized reagent mixture composed of 2 ml of HNO3, 2 ml of H2O2 and 0.3 ml of HF used in microwave digestion of about 0.15 g (dry weight) of sample was found to give the best overall recoveries of metals in two standard reference materials. In the oyster tissue standard reference material (SRM 1566b), recoveries of Na, Al, K, V, Co, Zn, Se, Sr, Ag, Cd, Ni, and Pb were between 90% and 110%; Mg, Mn, Fe, Cu, As, and Ba recoveries were between 85% and 90%; Hg recovery was 81%; and Ca recovery was 64%. In a dogfish certified reference material (DORM-2), the recoveries of Al, Cr, Mn, Se, and Hg were between 90% and 110%; Ni, Cu, Zn, and As recoveries were about 85%; and Fe recovery was 112%. Method detection limits of the elements were established. Metal concentrations in flounder, scup, and blue crab samples collected from coastal locations around Long Island and in the Hudson River estuary were determined.  相似文献   

17.
In the framework of the activities of the European Commission Reference Laboratory (CRL) for residues at the Istituto Superiore di Sanità a number of analytical quality control trials on determination of trace analytes are being carried out. As regards trace elements it soon became apparent that the stability of Hg dilute aqueous solutions is rather unsatisfactory. An investigation was thus undertaken to ascertain the conditions under which the concentration of this metal does not appreciably change. Mercury solutions were prepared in high purity deionized water in the concentration range 1–10 ng g−1and the effect of various amounts of HNO3and K2Cr2O7(alone or in combination) was elucidated by measuring the variations with time in the actual concentration of Hg. Determinations were performed by both inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Results show that solutions added with 5% (w/w) HNO3and 0.01% (w/w) K2Cr2O7do not undergo any significant alteration in the nominal content of the analyte for at least 1 month. Similar conclusions are reached in the case of solutions enriched in CaCO3, NaCl, NaNO3, KH2PO4, KNO3, and Mg(NO3)2·6H2O to mimic acid digests of meat samples. The improvement ensuing from the adoption of this approach on the performance of the Hg analytical quality control trials is discussed in detail.  相似文献   

18.
Jadwiga Opydo 《Mikrochimica acta》2001,137(3-4):157-162
 Necessary conditions were established for simultaneous nickel and cobalt determination in environmental samples, such as oak wood and soil, based on cathodic adsorptive stripping voltammetry. Ni(II) and Co(II), complexed with dimethylglyoxime, were determined using a hanging mercury drop electrode. Optimum conditions were found to be: accumulation time 90 s, accumulation potential −0.80 V vs. SCE, supporting electrolyte 0.2 mol dm−3 ammonia-ammonium chloride buffer (pH = 9.4) + 0.05 mol dm−3 NaNO2 and dimethylglyoxime 2 × 10−4 mol dm−3. A linear current-concentration relationship was observed up to 7.51×10 −7 mol dm−3 for Ni(II) and 7.0 × 10−7 mol dm−3 for Co(II). Excess amounts of zinc(II) interfering with cobalt peaks were masked by complexation with EDTA. Wood and soils were mineralized by applying a microwave digestion system, using the mixtures H2O2 + HNO3 or HNO3 + HF, respectively. The developed procedure was tested by analysing international reference materials (BCR 62 Olive Leaves and GBW 08302 Tibet Soil). The developed procedure was used to determine pollution of oak stand with nickel and cobalt in different regions of Poland. Received August 10, 2000. Revision May 22, 2001.  相似文献   

19.
 Microwave digestion reduction-aeration and pyrolysis combined with cold vapour atomic absorption and cold vapour atomic fluorescence are compared for the determination of total mercury in several biological and environmental matrices. The biological samples were digested in a mixture of HNO3/H2O2, the environmental samples in a mixture of HNO3/HClO4. After reduction with SnCl2, the mercury was collected by two-stage gold amalgamation. After microwave digestion reduction-aeration, detection limits of 1.4 ng g−1 and 0.6 ng g−1 were obtained for cold vapour atomic absorption spectrometry (CVAAS) and cold vapour atomic fluorescence spectrometry (CVAFS), respectively, for 250 mg of environmental samples. For biological samples (500 mg) the detection limits were 0.7 ng g−1 (CVAAS) and 0.4 ng g−1 (CVAFS). After pyrolysis, detection limits of 3.5 ng g−1 and 1.6 ng g−1 for CVAAS and CVAFS, respectively, were obtained for a 10 mg sample. Pyrolysis can only be applied when the organic content of the sample is not too high. Accurate results were obtained for 8 certified reference materials of both environmental and biological origin. In addition, a real sludge sample was analysed. Author for correspondence. E-mail: richard.dams@rug.ac.be Received September 18, 2002; accepted December 3, 2002 Published online May 5, 2003  相似文献   

20.
 Combined analytical procedures consisting of wet digestion step followed by instrumental determination – differential pulse cathodic stripping voltammetry (DPCSV) or electrothermal atomic absorption spectrometry (ETAAS) – as well as a direct analysis method – slurry sampling ETAAS – for the determination of Cd, Co, Cr, Cu, Fe, Ni and Pb in milk, cheese and chocolate are described and compared. Wet digestion using a mixture of HNO3-HClO4-H2O2 is proposed for complete matrix decomposition prior to trace analyte determinati on by DPCSV or ETAAS. A mixture of HNO3-H2O2 is used for slurry preparation. Optimal instrumental parameters for trace analyte measurements are presented. The reliability of the procedures has been verified by analyzing standard reference materials. Results obtained are in good agreement with the certified values and the relative standard deviations (for these results) are in the range 5–10% for wet digestion DPCSV or ETAAS and 3–9% for slurry sampling ETAAS in the range of 2 μgċg−1 (Cd) to 12 μgċg−1 (Fe). Received August 24, 1999. Revision January 20, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号