首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了纤维状导电材料不锈钢纤维(SSF)填充高密度聚乙烯(HDPE)导电复合体系的导电渗流与流变渗流行为之间的关系,并与颗粒状导电颗粒炭黑(CB)/HDPE导电复合体系进行了比较.发现当SSF含量极低(0.3vol%)时,SSF/HDPE体系即发生导电渗流现象,且导电渗流转变区域极窄;而仅当SSF含量达到4.8vol%时,该复合体系才表现出流变渗流现象,这一结果与CB/HDPE体系及纳米级导电纤维填充体系截然不同.此外,通过正温度系数效应的研究发现SSF形成的导电通路稳定性高于CB/HDPE体系.我们认为,SSF/HDPE体系呈现的这些特点均与SSF较大的直径及长径比且其导电通路及流变渗流网络的形成机理不同有关.  相似文献   

2.
Local variations in filler particle concentration and/or shape and orientation in static filler/polymer composites are modelled as distributions of percolation thresholds. The concentration variations can be due to insufficient mixing, formation of semicrystalline voids during cooling from the melt, shrinkage during polymer curing, flow during physical compression or the like. Irregular filler shapes, especially elongated shapes, reduce the percolation threshold; thus natural variations in the shapes and orientations of filler particle aggregates lead to locally varying percolation thresholds. A distribution of percolation thresholds leads to an apparent percolation threshold based on the conductivity below the mean percolation threshold. For filler concentrations above the apparent percolation threshold the dielectric constant continues to increase before reaching a lowered peak value at the mean percolation threshold and then decreasing. Own experimental results on EBA /carbon black composites support the theory.  相似文献   

3.
This paper reports the structural, electrical, dielectric and mechanical properties of the Styrene-acrylonitrile (SAN)/graphite sheets (GS) composites. The composites were prepared by in situ polymerization. The variation of electrical conductivity, dielectric constant and ac conductivity as a function of volume fraction of GS was found to follow the power law model. The dielectric constant and dissipation factor of SAN/GS composites increased significantly near the percolation. The frequency dependence of dielectric constant, dissipation factor and ac conductivity was also analyzed. Nearly ohmic behavior of current density with electric field was observed above the percolation threshold. The composite was found to possess the hardness of pure polymer at the threshold value of GS.  相似文献   

4.
Summary: Volume conducting PA-12 based composites powders were chemically prepared by in situ polymerization and aniline doping at room temperature. These kinds of polyamide / PANI composites were investigated regarding their electrical properties. Their ac and dc electrical properties measured in the frequency range of 10−2–107 Hz are reported and the frequency dependence of electrical conductivity was investigated as a function of PANI concentration leading to the determination of the conductivity. The experimental conductivity was found to increase continuously with PANI content and explained by percolation theory with a relatively low percolation threshold of about 0.4 wt.%. The dielectric behavior of various PANI polymer composites has been characterized by the critical frequency ωc (denoting the crossover from the dc plateau of the conductivity to its frequency dependent ac behaviour). Modelling the conductivity behavior versus volume fraction using Slupkowski approach has revealed that the considered parameters are not sufficient to describe the electrical conductivity behavior.  相似文献   

5.
多壁碳纳米管对聚甲醛性能的影响   总被引:2,自引:1,他引:1  
将多壁碳纳米管(MWCNTs)和聚甲醛(POM)在转矩流变仪中熔融混合得到POM/MWCNT复合材料.研究了复合材料的形态,导热性能,导电性能,流变性能和结晶性能.结果表明,MWCNTs在没有经过处理的情况下能够均匀地分散在POM基体中;当向POM中添加1.0 wt%含量MWCNTs时,复合材料的导热系数上升到0.5289 W/(K m),比纯POM的导热系数0.198 W/(K m)提高1.5倍,通过有效介质方法(EMA)验证了体系导热系数提高幅度不大的原因是MWCNTs与POM之间形成了很高的界面热阻;当MWCNTs的含量为1.0 wt%时,体系产生了导电逾渗效应,逾渗值在0.5 wt%~1.0 wt%之间;MWCNTs对POM有显著的成核作用,当向POM中添加0.5 wt%含量的MWCNTs时,POM的结晶温度提高6℃左右,但当MWCNTs的添加量进一步增加时,结晶温度几乎不再变化,成核效果呈现"饱和"状态.另外,材料的复数黏度,储能模量和损耗模量随MWCNTs含量的增加而增加.  相似文献   

6.
研究了短碳纤维(Shortcarbonfiber,SCF)填充高密度聚乙烯(HDPE)导电复合体系的渗流(Percola-tion)与压阻行为(Piezoresistivebehavior,PRB),发现SCF经物理接触而形成的导电网络是复合材料导电的根源.体系的压阻行为呈现浓度依赖性.受压时SCF间隙的减小与渗流网络的局部破坏-重建过程随填料浓度、载荷大小和力学循环次数的变化而变化,导致PRB表现为电阻负压力系数(NPC)、电阻正压力系数(PPC)或两者兼有的现象.讨论了体系PRB的稳定性,发现由于HDPE基体的塑性永久形变,电阻-时间基线随着压缩循环的进行而发生漂移,多次循环可有效提高体系的压阻稳定性.  相似文献   

7.
In this work we present the preparation of conductive polyethylene/carbon nanotube composites based on the segregated network concept. Attention has been focused on the effect of decreasing the amount of filler necessary to achieve low resistivity. Using high- and low-grade single-walled carbon nanotube materials we obtained conductive composites with a low percolation threshold of 0.5 wt.% for high-grade nanotubes, about 1 wt% for commercial nanotubes and 1.5 wt% for low-grade material. The higher percolation threshold for low-grade material is related to low effectiveness of other carbon fractions in the network formation. The electrical conductivity was measured as a function of the single-walled carbon nanotubes content in the polymer matrix and as a function of temperature. It was also found that processing parameters significantly influenced the electrical conductivity of the composites. Raman spectroscopy was applied to study single wall nanotubes in the conductive composites.  相似文献   

8.
Preparation of the conducting composites of polystyrene/expanded graphite via in situ polymerization and investigation of the conductive mechanism were carried out. They are characterized by high conductivity and a low percolation threshold. The electrical conductivity reached 10?2 S/cm with 3.0 vol % expanded graphite content, whereas the percolation threshold was 1.0 vol %. Optical micrographs revealed the heterogeneous distribution of the graphite particles and the formation of a conductive network in the polymer matrix. A model of primary particle was proposed to interpret the conductive phenomena. The primary particle is the basic conductive unit in the composites that comprises three of the following parts: the graphite particle, the compact‐adsorbed layer, and the wrapping shell. Our model was also used to explain the experimental data in our previous studies on nylon‐6/expanded graphite composites. A low percolation threshold of conducting composites can be also explained according to the model of the primary particle. Furthermore, the theoretical line of conductivity versus primary particle content calculated from the revised Flory's theory fits the experimental data well. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 954–963, 2002  相似文献   

9.
Polyethylene (PE)/aluminum (Al) nanocomposites with various filler contents were prepared by a solution compounding method. We investigated the influence of the surface modification of Al nanoparticles on the microstructure and physical properties of the nanocomposites. The silane coupling agent octyl‐trimethoxysilane was shown to significantly increase interfacial compatibility between the polymer phase and Al nanoparticles. Rheological percolation threshold values were determined by analyzing the improvement in storage modulus at low frequencies depending on the Al loadings. Lower percolation threshold values were obtained for the composites prepared with the original nanoparticles than those prepared with the silane‐modified Al nanoparticles. A strong correlation between the time and concentration dependences of dc conductivity and rheological properties was observed in the different nanocomposite systems. The rheological threshold of the composites is smaller than the percolation threshold of electrical conductivity for both of the nanocomposite systems. The difference in percolation threshold is understood in terms of the smaller particle–particle distance required for electrical conduction when compared with that required to impede polymer mobility. It was directly shown by SEM characterization that the nanoparticle surface modification yielded better filler dispersion, as is consistent with our rheological and electrical analysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2143–2154, 2008  相似文献   

10.
The DC conductivity of polymer blends composed of poly(ethylene‐co‐vinyl acetate) (EVA) and high density polyethylene (HDPE), where a conductive carbon black (CB) had been preferentially blended into the HDPE, were investigated to establish the percolation characteristics. The blends exhibited reduced percolation thresholds and enhanced conductivities above that of the individually carbon filled HDPE and EVA. The percolation threshold of the EVA/HDPE/CB composites was between 3.6 and 4.2 wt % carbon black, where the volume resistivity changed by 8 orders of magnitude. This threshold is at a significantly lower carbon content than the individually filled HDPE or EVA. At a carbon black loading of 4.8 wt %, the EVA/HDPE/CB composite exhibits a volume resistivity which is approximately 14 and 11 orders of magnitude lower than the HDPE/CB and EVA/CB systems, respectively, at the same level of incorporated carbon black. The dielectric response of the ternary composites, at a temperature of 23°C and frequency of 1 kHz, exhibited an abrupt increase of ca. 252% at a carbon concentration of 4.8 wt %, suggesting that the percolation threshold is somewhat higher than the range predicted from DC conductivity measurements. Percolating composites with increasing levels of carbon black exhibit significantly greater relative permittivity and dielectric loss factors, with the composite containing 6 wt % of carbon black having a value of ϵ′ ≈ 79 and ϵ″ ≈ 14. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1899–1910, 1999  相似文献   

11.
A commercially available aliphatic thermoplastic polyurethane formulated with a methylene bis(cyclohexyl) diisocyanate hard segment and a poly(tetramethylene oxide) soft segment and chain‐extended with 1,4‐butanediol was dissolved in dimethylformamide and mixed with dispersed single‐walled carbon nanotubes. The properties of composites made with unfunctionalized nanotubes were compared with the properties of composites made with nanotubes functionalized to contain hydroxyl groups. Functionalization almost eliminated the conductivity of the tubes according to the conductivity of the composites above the percolation threshold. In most cases, functionalized and unfunctionalized tubes yielded composites with statistically identical mechanical properties. However, composites made with functionalized tubes did have a slightly higher modulus in the rubbery plateau region at higher nanotube fractions. Small‐angle X‐ray scattering patterns indicated that the dispersion reached a plateau in the unfunctionalized composites that was consistent with the plateau in the rubbery plateau region. The room‐temperature modulus and tensile strength increase was proportionally higher than almost all increases seen previously in thermoplastic polyurethanes; however, the increase was still an order of magnitude below what has been reported for the best nanotube–polymer systems. Nanotube addition increased the hard‐segment glass transition temperature slightly, whereas the soft‐segment glass transition was so diffuse that no conclusions could be drawn. Unfunctionalized tubes suppressed the crystallization of the hard segment; whereas functionalized tubes had no effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 490–501, 2007  相似文献   

12.
Charge transfer in nanostructured metal-polymer composites was studied. The frequency dependences of film conductance and susceptance were obtained at various metal concentrations. The susceptance of samples above the percolation threshold was negligibly small, which corresponded to the purely metallic conductivity type. For samples below the percolation threshold, susceptance and conductance were comparable in magnitude, which was evidence of an important role played by susceptance mechanisms. At low frequencies, the samples behaved as quasi-linear RC circuits and both the active and reactive impedance components increased linearly as the frequency grew. At high frequencies, the dispersion of susceptance, which was inversely proportional to frequency, was observed. The conclusion was drawn that the hopping conductivity mechanism through polymeric matrix surface states prevailed in films below the percolation threshold. At high frequencies, when the applied voltage period was shorter than the characteristic time of surface state recharging, these states began to be eliminated from charge transfer processes. It was suggested that a decrease in the reactive impedance component with an increase in frequency might be the reason for the dispersion observed experimentally.  相似文献   

13.
In this work, graphene nanoplatelet (GNP) filled polymethyl methacrylate (PMMA) composites were prepared using solution method via a specially designed route and relatively high thermal conductivities of the composites were achieved at a low GNP loading. The effect of GNP content on rheological behavior, thermal and electrical conductivity of the composites was intensively investigated. Thermorheological complexity was displayed at elevated GNP loading, and the rheological percolation threshold of GNP in PMMA decreased from 7.96 wt% at 220 °C to 4.02 wt% at 260 °C according to Winter-Chambon method, suggesting that GNP was more likely to form a seepage network at higher temperature. The DMTA results showed that the increase in moduli of the composites should be ascribed to the formation of the GNP-GNP network structure. The electrical conductivity of the composites underwent a sudden jump by seven orders of magnitude, which also indicated the formation of a GNP conductive pathway in the matrix with an electrical percolation threshold of 2–4 wt%. The results of transient temperature measurement were in good consistent with the thermal conductivity versus GNP loading, which was compared with various thermal conduction models with a modified Agari model presenting an acceptable evaluation of the dispersion status of GNP in the matrix. The experimental electrical and thermal conductivities as a function of GNP content could well be interpreted by the filler network structure as observed in morphological studies.  相似文献   

14.
A novel method for preparing conductive carbon black filled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise in carbon black concentration the insulator-conductor transition in the emulsion blended composites occurs at 0.8-1.4vol%. In contrast, the solution blended composites exhibit drastic increase in conductivity at conducting filler fraction as high as 12.3-13.3vol%. It is demonstrated that the composites microstructure rather than chemical structure of the matrix polymer predominantly determines the electrical conduction performance of the composites.  相似文献   

15.
A model is introduced for the conductivity of carbon-nanotube polymer composites based upon percolation theory and fractals. These types of polymer composites have been developed in the recent years, and experimental data on their percolation threshold is available. We constructed a fractal space with the aim of the generalized Mandelbrot-Given curve and used the experimental critical exponent of conductivity to calculate the parameters of such a curve. Finally, the moments of the current distribution function are estimated, and the effect of the critical exponent on this function is investigated.  相似文献   

16.
聚乙烯/聚并苯复合材料室温电阻率变化规律研究   总被引:3,自引:1,他引:2  
以新型导电材料聚并苯替代碳黑作为导电填料制备聚乙烯/聚并苯复合物.确定了复合物渗流转变区,并解释渗流转变现象的产生机理.从聚并苯含量和热处理过程,对聚乙烯/聚并苯复合物室温电阻率变化规律进行讨论.结果表明,聚并苯质量分数在20%~40%之间是聚乙烯/聚并苯复合物渗流转变区;热处理有利于聚乙烯晶区完善排列,也有利于导电链形成;以聚并苯作为导电填料所制备的复合物具有较高的PTC强度;辐射交联可以提高聚乙烯/聚并苯复合物PTC强度,抑制NTC效应.  相似文献   

17.
This review of the current status of conducting polymers will focus on recent progress which demonstrates that the initial promise of the late 1970's has become reality. Conducting polymers are now available as materials with truly unique properties: They combine the important electronic and optical properties of semiconductors and metals with the attractive mechanical properties and processing advantages of polymers. Conducting polymer blends based upon polyaniline (PANI) are a new class of materials in which the threshold for the onset of electrical conductivity (σ) can be reduced to volume fractions below 1%, well below that required for classical percolation (16% by volume for globular conducting objects dispersed in an insulating matrix in three dimensions). The origin of this remarkably low threshold for the onset of electrical conductivity is the self-assembled network morphology of the PANI polyblends which forms during the course of liquid-liquid separation. Since the average density of the conducting network near threshold is small, the conductivity increases smoothly and continuously over many orders of magnitude as the concentration of conducting polymer increases above threshold. The low percolation threshold and the continuous increase of σ(f) above threshold are particularly important; as a result of this combination, conducting polyblends can be reproducibly fabricated with controlled levels of electrical conductivity while retaining the desired mechanical properties of the matrix polymer.1-3)  相似文献   

18.
The organo-inorganic composites based on a strongly acid gel resin including zirconium hydro-phosphate nanoparticles and their aggregates were studied by impedance spectroscopy, electron microscopy, and standard contact porosimetry. The porous structure of the polymer was transformed under the action of the inorganic filler. The nanoparticles in the transport pores provided a three- to fivefold increase in the electric conductivity of the nanocomposites compared with the conductivity of the nonmodified ionite and a decrease in the percolation threshold. The nanocomposite ionites demonstrated stability against the accumulation of organic substances during electrodeionization to extract Na+ from low-concentrated solutions.  相似文献   

19.
This article focuses on the electrical conductivity study of the brine solution/sucrose laurate/ethoxylated mono-di-glyceride/oil + ethanol system. The oils were R (+)-limonene, isopropylmyristate and caprylic-capric triglyceride. The mixing ratio (w/w) of ethanol/oil and that of sucrose laurate/ethoxylated mono-di-glyceride equal unity. The brine solution was 0.01 M aqueous sodium chloride solution. No observable effect was observed on the phase boundaries by replacing pure water with brine solution in the case of R (+)-limonene based microemulsions. In the systems based on isopropylmyristate and caprylic-capric triglyceride, the replacement of pure water by brine significantly affected the phase boundaries, the microemulsion region shrink and the total monophasic area of microemulsions decreased. Electrical conductivity increases with the increase in the water volume fraction and percolation thresholds were observed. The critical volume fractions where the percolation thresholds appear depend on the type of oil used in the microemulsion formulation. Electrical conductivity was measured at different temperatures and the activation energy of conduction flow was evaluated. At the percolation threshold the activation energy of conduction flow reaches a minimum value. Beyond the percolation threshold, a small increase is observed in the activation energy of conduction flow then it decreases with the increase in the water volume fraction indicating structural transitions.  相似文献   

20.
通过共挤出包覆-热压法制备了具有隔离结构的聚丙烯(PP)/碳纳米管(CNTs)电磁屏蔽复合材料。 其中,CNTs随机分布于PP基体中形成导电相,该导电复合物作为包覆层包敷在纯PP颗粒表面,形成包覆复合粒子,经热压后形成隔离导电网络。 结果表明,所制备的隔离结构复合材料呈现良好的导电性能,可获得较低的导电逾渗值0.28%(体积分数);在CNTs质量分数为5.6%时,该复合材料电磁屏蔽性能达到25.6 dB,同时具有良好的力学性能。 本文结果表明,共挤出包覆-热压法制备隔离结构导电复合材料方法简单可控、绿色环保,对开发高性能电磁屏蔽复合材料具有重要指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号