首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Animals perceive their environment by converting sensory stimuli into action potentials, or temporal point processes, that are interpreted by the brain. This paper investigates the information content of point processes extracted from echoes from in situ plants in an effort to understand how bats recognize landmarks in the field. A mobile sonar converts echoes into biologically similar temporal point processes. termed pseudo-action potentials (PAPs), whose inter-PAP interval relates to echo amplitude. The sonar forms a sector scan of an object to produce a spatial-temporal PAP field. Classifier neurons apply delays and coincidence detection to the PAP field to identify three distinct echo types, glints, blobs, and fuzz, which characterize plant features. Glints are large amplitude echoes exhibiting coherence over successive echoes in the sector scan, typically produced by favorably oriented isolated specular reflectors. Blobs are large echoes lacking coherence, typically bordering glints or formed by collections of interfering reflectors. Fuzz represents weak echoes, typically produced by collection of weak scatterers or by reflectors on the beam periphery. A small mirror reflector models a flat leaf surface and motivates the glint criteria. Classifiers are applied to experimental data from two types of tree trunks, a glint-producing sycamore (Platanus occidenatalis) and a glint-absent Norway maple (Acer platanoides) and two plants, a glint-producing rhododendron (Rhododendron maximus) and a glint-absent yew (Taxus media). We speculate that our narrow-band sonar models the activity of a single frequency bin in the frequency-modulated (FM) sweep emitted by bats, and that one function of the frequency bins in the FM sweep is to form a sector scan of the environment.  相似文献   

2.
The sensitivity of the echolocating bat, Eptesicus fuscus, for detection of a sonar target is impaired by the presence of additional targets located at similar distances. At a range of 54 cm, sensitivity to one target declines if the range separation to other targets is smaller than 8-9 cm. This loss of sensitivity is an example of clutter interference along the range axis, created by simultaneous masking of one set of echoes by another. Echoes that fall within an experimentally defined critical range band may sum together to contribute collectively to detection in that band. Echoes falling into separate bands may be detected independently. Acoustic glints within a band appear to be grouped together to be perceived as a single range-extended target of complex structure. Range bands may thus define what a "target" is by specifying within-target and between-target differences in range. The width of critical range bands appears to depend upon target range, with wider bands at greater ranges.  相似文献   

3.
The acoustic basis for target discrimination by FM echolocating bats   总被引:2,自引:0,他引:2  
Past experiments show that echolocating bats of the species Myotis lucifugus and Eptesicus fuscus can discriminate among airborne sonar targets presented in the context of pursuit maneuvers for the interception of prey. These bats distinguish between edible mealworms and inedible spheres of various sizes. Myotis can distinguish between disks and mealworms similar enough in size that the bat's performance requires the ability to perceive the acoustic equivalent of target shape. Previously observed small differences in the spectrum of echoes from mealworms and disks appear insufficient to distinguish these targets at the performance levels achieved by bats. We measured the acoustic properties of the targets by broadcasting ultrasonic impulses at mealworms, spheres, and disks and recording their echoes, displaying the results in terms of impulse echo waveforms and the frequency response of targets derived from the target transfer function. The echoes from disks and mealworms at various orientations convey the range-axis profile of the target (number and spacing of reflecting points or glints distributed at different ranges) in terms of the impulse structure of their waveforms and in terms of the locations and spacing of notches or nulls in their spectra. For targets that bats can discriminate and that reflect echoes which do not clearly differ in overall amplitude, the targets appear distinguishable from the acoustic representation of their range profile, which is a feature of targets that bats can perceive with great acuity.  相似文献   

4.
The angular spatial resolution of a wide-angle air sonar using a continuous transmission frequency-modulated radiation, with the output coupled binaurally to the auditory system of a user, was measured under restrained controlled conditions. This was done to determine the effect of adding a narrow central field of view of 9 deg to a wide-angle sonar. The target objects were three equidistant vertical rods initially spaced apart by 10 deg. This was varied down to a spacing of 4 deg. Ten nonvisual subjects achieved an angular resolution of 6 deg. Four of these ten subjects continued learning to achieve an unexpected spatial resolution of 4 deg within the 9 deg central field. A mean error of approximately 1 deg in direction accuracy was achieved. It is inferred that the unique variations in the octave band ultrasonic echoes within the narrow field, and the invariance of the on-axis echo as one's head is turned, enables this angular resolution and accuracy to be achieved within the wide binaural field of view of 50 deg. This ability to resolve specula objects within a narrow angular resolution element of 9 deg is linked to the bat's ability to seemingly resolve object glints within a distal resolution element of less than 2 wavelengths.  相似文献   

5.
Gamma ray spectra in the energy range of 4–25 MeV were measured in the reaction 28Si + 124Sn at E(28Si) 150 MeV in coincidence with low energy γ-multiplicities. The spectra were analysed using a simulated Monte Carlo CASCADE code. The centroid energy and width of the giant dipole resonance were extracted for various multiplicity windows. The average angular momentum and temperature of the final states populated after the giant dipole photon emission range from 25 and 1.5 MeV to 56 and 1.3 MeV, respectively. The extracted widths are almost constant for the lower multiplicity windows and show an increase of 1.4 MeV at the highest window. The nuclei are expected to be near the liquid drop regime and the experimental results are not inconsistent with the liquid drop behaviour.  相似文献   

6.
Measurement of acoustic backscattering properties of targets requires removal of the range dependence of echoes. This process is called range compensation. For conventional sonars making measurements in the transducer farfield, the compensation removes effects of geometrical spreading and absorption. For parametric sonars consisting of a parametric acoustic transmitter and a conventional-sonar receiver, two additional range dependences require compensation when making measurements in the nonlinearly generated difference-frequency nearfield: an apparently increasing source level and a changing beamwidth. General expressions are derived for range compensation functions in the difference-frequency nearfield of parametric sonars. These are evaluated numerically for a parametric sonar whose difference-frequency band, effectively 1-6?kHz, is being used to observe Atlantic herring (Clupea harengus) in situ. Range compensation functions for this sonar are compared with corresponding functions for conventional sonars for the cases of single and multiple scatterers. Dependences of these range compensation functions on the parametric sonar transducer shape, size, acoustic power density, and hydrography are investigated. Parametric range compensation functions, when applied with calibration data, will enable difference-frequency echoes to be expressed in physical units of volume backscattering, and backscattering spectra, including fish-swimbladder-resonances, to be analyzed.  相似文献   

7.
Nonlinear autonomous dynamical systems with ahomoclinic tangency to a periodic orbit are investigated. We study the bifurcation sequences of the mixed-mode oscillations generated by the homoclinicity, which are shown to belong to two different types, depending on the nature of the Liapunov numbers of the basic periodic orbit. A detailed numerical analysis is carried out to show how the existence of a tangent homoclinic orbit allows us to understand in a quantitative way a particular and regular sequence of cool flame-ignition oscillations observed in a thermokinetic model of hydrocarbon oxidation. Chaotic cool flame oscillations are also observed in the same model. When the control parameter crosses a critical value, this chaotic set of trajectories becomes globally unstable and forms a Cantor-like hyperbolic repellor, and the ignition mechanism generates ahomoclinic tangency to the Cantor set of trajectories. The complex bifurcation diagram may be globally reconstructed from a one-dimensional dynamical system, thanks to the strong contractivity of thermokinetics. It is found that a symbolic dynamics with three symbols is necessary to classify the periodic windows of the complex bifurcation sequence observed numerically in this system.  相似文献   

8.
PurposeThe gradient system transfer function (GSTF) can be used to describe the dynamic gradient system and applied for trajectory correction in non-Cartesian MRI. This study compares the field camera and the phantom-based methods to measure the GSTF and implements a compensation for the difference in measurement dwell time.MethodsThe self-term GSTFs of a MR system were determined with two approaches: 1) using a dynamic field camera and 2) using a spherical phantom-based measurement with standard MR hardware. The phantom-based GSTF was convolved with a box function to compensate for the dwell time dependence of the measurement. The field camera and phantom-based GSTFs were used for trajectory prediction during retrospective image reconstruction of 3D wave-CAIPI phantom images.ResultsDifferences in the GSTF magnitude response were observed between the two measurement methods. For the wave-CAIPI sequence, this led to deviations in the GSTF predicted trajectories of 4% compared to measured trajectories, and residual distortions in the reconstructed phantom images generated with the phantom-based GSTF. Following dwell-time compensation, deviations in the GSTF magnitudes, GSTF-predicted trajectories, and resulting image artifacts were eliminated (< 0.5% deviation in trajectories).ConclusionWith dwell time compensation, both the field camera and the phantom-based GSTF self-terms show negligible deviations and lead to strong artifact reduction when they are used for trajectory correction in image reconstruction.  相似文献   

9.
In Einstein-Podolsky-Rosen-Bohm (EPRB) experiments, the record of the time of detection of each single photon (“time stamping”) provides much more information than the usual record of coincidence rates. It is a preferable technique for several reasons, and it can be realized with accessible means nowadays. As an illustration of its capacities, we show that a certain class of non-ergodic (local realistic) models that violates the Bell’s inequalities, even in ideally perfect setups, is disproved from the examination of time stamped files. This class of models, which has remained untested until now, exploits the finite size of the time window defining the coincidences, and it cannot be disproved by measuring coincidence rates. We use not only our own experimental data, but also the data obtained in the Innsbruck experiment with random variable analyzers.  相似文献   

10.
We study the drift of slow variables in a slow-fast Hamiltonian system with several fast and slow degrees of freedom. Keeping the slow variables frozen, for any periodic trajectory of the fast subsystem we define an action. For a family of periodic orbits, the action is a scalar function of the slow variables and can be considered as a Hamiltonian function which generates some slow dynamics. These dynamics depend on the family of periodic orbits.Assuming that for the frozen slow variables the fast system has a pair of hyperbolic periodic orbits connected by two transversal heteroclinic trajectories, we prove that for any path composed of a finite sequence of slow trajectories generated by action Hamiltonians, there is a trajectory of the full system whose slow component shadows the path.  相似文献   

11.
李锋  蔡铭 《应用声学》2016,35(6):527-532
对碰撞点的有效性判断是传统声线跟踪法的一个重要步骤,在计算复杂的室内空间问题时计算量较大,为解决这一问题采用了一种与空间剖分相结合的改进的声线跟踪法。将该方法与微观交通流仿真和车辆噪声排放模型进行结合,实现了道路交通噪声透过窗户在多连通室内空间传播的动态模拟。最后采用该方法对相同道路和交通流条件下不同建筑朝向的4种布局室内噪声进行动态模拟。分析了室内交通噪声的大小和分布与建筑物布局、窗户的朝向、窗户的形式和面积等因数之间的关系。结果表明:窗户正对道路的房间比窗户侧对道路的房间噪声高4~6 d B(A),房间内等效声级与窗户面积的对数成正比关系。  相似文献   

12.
贾蒙  樊养余  田维坚 《中国物理 B》2011,20(3):34701-034701
Attempting to find a fast computing method to DHT(distinguished hyperbolic trajectory),this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend.This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time.Based on this theory and combined with the improved DHT computing method,this paper reports a new fast computing method to DHT,which magnifies the DHT computing speed without decreasing its accuracy.  相似文献   

13.
Ge, Rusjan, and Zweifel introduced a binary tree which represents all the periodic windows in the chaotic regime of iterated one-dimensional unimodal maps. We consider the scaling behavior in a modified tree which takes into account the self-similarity of the window structure. A nonuniversal geometric convergence of the associated superstable parameter values towards a Misiurewicz point is observed for almost all binary sequences with periodic tails. For these sequences the window period grows arithmetically down the binary tree. There are an infinite number of exceptional sequences, however, for which the growth of the window period is faster. Numerical studies with a quadratic maximum suggest more rapid than geometric scaling of the superstable parameter values for such sequences.  相似文献   

14.
贾蒙  樊养余  李慧敏 《物理学报》2010,59(11):7686-7692
提出自适应因子和轨道延拓相结合的二维流形计算方法,利用以平衡点为中心的椭圆对局域流形的近似,通过轨道的等距延拓和椭圆初始点的自适应调节,在精度要求下自适应的添加轨道,完成二维双曲不变流形的计算.此方法比"轨道弧长法"精度高,包含更多细节信息;同时要比"盒子细分法"更能反映流形的延拓趋势.  相似文献   

15.
The directionality of bat echolocation calls defines the width of bats' sonar "view," while call intensity directly influences detection range since adequate sound energy must impinge upon objects to return audible echoes. Both are thus crucial parameters for understanding biosonar signal design. Phyllostomid bats have been classified as low intensity or "whispering bats," but recent data indicate that this designation may be inaccurate. Echolocation beam directionality in phyllostomids has only been measured through electrode brain-stimulation of restrained bats, presumably excluding active beam control via the noseleaf. Here, a 12-microphone array was used to measure echolocation call intensity and beam directionality in the frugivorous phyllostomid, Carollia perspicillata, echolocating in flight. The results showed a considerably narrower beam shape (half-amplitude beam angles of approximately 16° horizontally and 14° vertically) and louder echolocation calls [source levels averaging 99 dB sound pressure level (SPL) root mean square] for C. perspicillata than was found for this species when stationary. This suggests that naturally behaving phyllostomids shape their sound beam to achieve a longer and narrower sonar range than previously thought. C. perspicillata orient and forage in the forest interior and the narrow beam might be adaptive in clutter, by reducing the number and intensity of off-axis echoes.  相似文献   

16.
The work reports about window design studies for both the JET EP ECRH project and the ASDEX-Upgrade ECRH system. Detailed calculations of the millimeter wave transmission characteristics for conventional single-disk windows, for frequency tunable double-disk windows and for ultra-broadband Brewster windows have been performed. The geometry of the window units has been optimized in order to obtain a suitable transmission characteristic, i.e. power reflection less than –20 dB within a frequency bandwidth of about 1 GHz around the chosen frequencies. In particular the influence of mechanical tolerances on the transmission characteristic has been investigated in order to specify the mechanical dimensions of the CVD-diamond disks and the window unit. In case of a Brewster window, the thickness has been optimized to get low power reflection over a wide angles range around the Brewster angle.  相似文献   

17.
A. Goldberg   《Nuclear Physics A》1984,420(3):636-644
We give the virtual photon spectrum appropriate to electromagnetic reactions between relativistic nuclei and stationary massive targets, for all multipoles, in terms of the classical trajectories of the ions. Within the approximation that projectile and target charges do not overlap, the dissociation cross section can be written directly in terms of the various multipole photoabsorption cross sections. The dominant multipole is E1. M1 contributions are shown to be negligible, while E2 effects become significant for heavy projectiles and could be measured in coincidence experiments. The effects of the curvilinear trajectory are also small and can be included with a minor modification of the results for straight-line trajectories.  相似文献   

18.
Emergence of classicality from quantum mechanics, a hotly debated topic, has had no satisfactory resolution so far. Various approaches including decoherence and gravitational interactions have been suggested. In the present work, the Schrödinger–Newton model is used to study the role of semi-classical self-gravity in the evolution of massive spin-1/2 particles in a Stern-Gerlach experiment. For small mass, evolution of the initial wavepacket in a spin superposition shows a splitting in the magnetic field gradient into two trajectories as in the standard Stern–Gerlach experiment. For larger mass, the deviations from the central path are less than in the standard Stern–Gerlach case, while for high enough mass, the wavepacket does not split, and instead follows the classical trajectory for a magnetic moment in inhomogeneous magnetic field. This indicates the emergence of classicality due to self-gravitational interaction when the mass is increased. In contrast, decoherence which is a strong contender for emergence of classicality, leads to a mixed state of two trajectories corresponding to the spin-up and spin-down states, and not the classically expected path. The classically expected path of the particle probably cannot be explained even in the many-worlds interpretation of quantum mechanics. Stern–Gerlach experiments in the macroscopic domain are needed to settle this question.  相似文献   

19.
Bottlenose dolphins (Tursiops truncatus) detect and discriminate underwater objects by interrogating the environment with their native echolocation capabilities. Study of dolphins' ability to detect complex (multihighlight) signals in noise suggest echolocation object detection using an approximate 265-micros energy integration time window sensitive to the echo region of highest energy or containing the highlight with highest energy. Backscatter from many real objects contains multiple highlights, distributed over multiple integration windows and with varying amplitude relationships. This study used synthetic echoes with complex highlight structures to test whether high-amplitude initial highlights would interfere with discrimination of low-amplitude trailing highlights. A dolphin was trained to discriminate two-highlight synthetic echoes using differences in the center frequencies of the second highlights. The energy ratio (delta dB) and the timing relationship (delta T) between the first and second highlights were manipulated. An iso-sensitivity function was derived using a factorial design testing delta dB at -10, -15, -20, and -25 dB and delta T at 10, 20, 40, and 80 micros. The results suggest that the animal processed multiple echo highlights as separable analyzable features in the discrimination task, perhaps perceived through differences in spectral rippling across the duration of the echoes.  相似文献   

20.
This paper discusses the sensitivity analysis of high power, high performance W-band dual-window SPST switch with respect to key design parameters viz. the window capacitance, window inductance and the spacing between the windows. The theoretical analysis presented in this work reveals that the Insertion Loss of the switch depends critically on the window capacitance and window spacing. The performance is not strongly affected over a fairly wide range of window inductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号