首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
OXYGEN DIFFUSION THROUGH HORSERADISH PEROXIDASE   总被引:4,自引:0,他引:4  
The quenching by molecular oxygen of the fluorescence from a protoporphyrin IX adduct of horseradish peroxidase has been investigated using both intensity and time-resolved techniques. The bimolecular quenching rate constant determined for this process, as evaluated by the conventional Stern-Volmer analysis, was 2 x 10(8) M-1 s-1, among the lowest observed for protein systems. This result suggests that the heme binding site in horseradish peroxidase is relatively inaccessible to oxygen, which may account for the observation of room temperature phosphorescence in aerated solutions from enzymatically created triplet states.  相似文献   

2.
Novel synthetic polyene polyketones and new synthetic capsorubin isomers were examined for their ability to quench singlet molecular oxygen (1O2) generated by the thermodissociation of the endoperoxide of 3,3'-(1,4-naphthylene) dipropionate (NDPO2). C28-polyene-tetrone (1) exhibits the highest physical quenching rate constant with 1O2 (kq = 16 x 10(9) M-1 s-1). For comparison, the rate constant for the most efficient biological carotenoid, lycopene (3) is kq = 9 x 10(9) M-1 s-1 and that of beta-carotene (5) kq = 5 x 10(9) M-1 s-1. The presence of two oxalyl chromophores at the ends of the polyene chain seems to enhance the 1O2 quenching ability in the C28-polyene-tetrone (1). C28-polyene-tetrone-diacetal (2) (kq = 9 x 10(9) M-1 s-1) and C40-epiisocapsorubin (4) (kq = 8 x 10(9) M-1 s-1) also have high 1O2 quenching abilities. Two carotenoids from plants, phytoene and phytofluene, were much less efficient, kq values being below 10(7) M-1 s-1. Due to the very high singlet oxygen quenching abilities, C28-polyene-tetrone (1), C28-polyene-tetrone-diacetal (2) and C40-epiisocapsorubin (4) may have potential use in preventing 1O2-induced damage in biological and non-biological systems.  相似文献   

3.
Using water-soluble 1,8-naphthalimide derivatives, the mechanisms of photosensitized DNA damage have been elucidated. Specifically, a comparison of rate constants for the photoinduced relaxation of supercoiled to circular DNA, as a function of dissolved halide, oxygen and naphthalimide concentration, has been carried out. The singlet excited states of the naphthalimide derivatives were quenched by chloride, bromide and iodide. In all cases the quenching products were naphthalimide triplet states, produced by induced intersystem crossing within the collision complex. Similarly, the halides were found to quench the triplet excited state of the 1,8-naphthalimide derivatives by an electron transfer mechanism. Bimolecular rate constants were < 10(5) M-1 s-1 for quenching by bromide and chloride. As expected from thermodynamic considerations quenching by iodide was 6.7 x 10(9) and 8.8 x 10(9) M-1 s-1 for the two 1,8-naphthalimide derivatives employed. At sufficiently high ground-state concentration self-quenching of the naphthalimide triplet excited state also occurs. The photosensitized conversion of supercoiled to circular DNA is fastest when self-quenching reactions are favored. The results suggest that, in the case of 1,8-naphthalimide derivatives, radicals derived from quenching of the triplet state by ground-state chromophores are more effective in cleaving DNA than reactive oxygen species or radicals derived from halogen atoms.  相似文献   

4.
Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.  相似文献   

5.
The photooxidation of the antipsoriatic drug anthralin (1,8-dihydroxy-9-anthrone) has been studied by several kinetic techniques, including direct observation of 1O2 (1 delta g) luminescence at 1.27 microns. The rate of deactivation of 1O2 increases at higher pH, demonstrating that the trihydroxyanthracene anion is the reactive species. Direct determination of the rate constant of 1O2 deactivation (kR + kQ) in deuterated buffer systems by luminescence quenching gave a value of 3.0 x 10(8) M-1 s-1 for the anion; the neutral anthrone is unreactive. The rate constant for the neutral anthrone in benzene-d6 is 2.8 x 10(4) M-1 s-1. Competition experiments with tetramethylethylene in acetonitrile gave a rate constant for reaction alone (kR) of 2.1 x 10(8) M-1 s-1 for the anion.  相似文献   

6.
A fluorescent analog of retinol, 3,7-dimethyl-9-(1-pyryl)-2E,4E,6E,8E-nonatetr aene-1-ol (referred to as pyrylretinol, or 1) has been synthesized. The fluorescence properties (e.g. quantum yield, lifetime, steady-state anisotropy, and excitation/emission spectra) of this compound in various organic solvents and in dimyristoylphosphatidylcholine (DMPC) liposomes have been studied, and the results are compared with those obtained from 3-methyl-5-(1-pyryl)-2E,4E-pentadiene-1-ol (2), which has the same fused aromatic ring system but a much shorter acyclic chain. 1 and 2 form excimer in aqueous media and fluorescence anisotropies of both 1 and 2 in DMPC liposomes exhibit an abrupt decrease at approximately 21-23 degrees C, which coincides with the main phase transition temperature of DMPC liposomes, indicating that both compounds may be a useful membrane probe. In addition, the binding and quenching capability of pyrylretinol (1) to bovine serum albumin has been investigated. Pyrylretinol (1) binds with BSA with a binding constant of 3.6 x 10(4) M-1, although the value is somewhat lower than that obtained for retinol (3.06 x 10(5) M-1). Pyrylretinol (1) also quenches the BSA intrinsic fluorescence with the quenching rate constant of 1.67 x 10(13) M-1 s-1 and the value is lower than that obtained for retinol (4.06 x 10(13) M-1 s-1). The binding and quenching studies suggest that pyrylretinol (1) may serve as a useful fluorescence probe for structure/function studies of different retinoid binding proteins.  相似文献   

7.
The oxazine dye, oxonine (3,7-diaminophenoxazin-5-ium chloride), 1, is photoreduced by Fe (II) sulfate in dilute sulfuric acid. The reaction mechanism is analogous to that for the photo-reduction of thiazine dyes by Fe (II), the most important difference being that reduction of oxonine occurs predominantly from its excited singlet state, S1, rather than from the triplet state, T1. The latter is formed with an intersystem crossing (isc) quantum yield of ca 1.7 x 10(-3). The quenching of S1 by Fe (II) has a rate constant kSQ = 2.2 +/- 0.1 x 10(9) M-1 s-1 and affords the one electron reduced product, semioxonine (R), with a limiting quantum yield, phi SR, of 0.26 +/- 0.02. In contrast, quenching of T1, generated by bromide ion quenching of S1 or by diacetyl sensitization, occurs with KTQ approximately 1.2 x 10(6) M-1 s-1, extrapolated to zero ionic strength, and affords R with a limiting probability, phi TR = 1.1 +/- 0.2. Three possible reasons for the lower quantum yield of the more exothermic S1 reduction are discussed. These are energy transfer from S1 to Fe (II), different rates of escape of R from the encounter complex as a consequence of the different states of protonation of R as initially formed from S1 and T1, and spin allowed back electron transfer in an exciplex formed between S1 and Fe (II). Evidence is also presented for a very low probability (ca 1%) induced isc from the encounter of S1 with paramagnetic Fe (II). Rate parameters for other processes important to the overall reduction mechanism such as disproportionation of R to leucooxonine L and oxonine, k(R)DIS = 1.7 +/- 0.2 x 10(9) M-1 s-1, oxidation of R by Fe (III), k(R)OX = 1.5 +/- 0.1 x 10(5) M-1 s-1, and oxidation of L by Fe (III), kLOX = 1.1 +/- 0.1 x 10(3) M-1 s-1, have also been measured. These results are contrasted with those for the closely related thionine/Fe(II) photoredox reaction, the most well understood system for photogalvanic energy conversion.  相似文献   

8.
Sanguinarine, a commercial drug exhibiting antimicrobial and antitumor properties, was studied with respect to its basic photochemical characteristics and also with regard to its phototoxicity to mosquito larvae (Aedes atropalpus). Sanguinarine proved to be clearly phototoxic to larvae, with an LD50 of 0.096 mg/mL with near UV exposure as compared with 23.3 mg/mL without. Flash photolysis experiments enabled the study of the triplet state of sanguinarine to be undertaken. Quenching by oxygen occurs with a rate constant of 6 x 10(9) M-1s-1 and time-resolved emission studies indicate that sanguinarine produces a significant amount of singlet oxygen (phi delta = 0.16) as does the isoquinoline alkaloid, berberine (phi delta = 0.25). These values represent the first direct quantitative measurements of photosensitization parameters of these compounds. Additionally, sanguinarine exhibits efficient electron donation properties, undergoing reaction with methyl viologen with a rate constant greater than 10(10) M-1s-1, but is a poor electron acceptor. Phototoxicity of sanguinarine can thus be explained in terms of its photosensitization properties.  相似文献   

9.
The triplet-excited state of benzophenone and the singlet-excited state of 2,3-diazabicyclo[2.2.2]oct-2-ene (Fluorazophore-P) have been employed as kinetic probes to obtain information on the antioxidant activity of the skin and eye pigment melanin and its biogenetic precursors 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA). The excited states were generated by the laser-flash photolysis technique and their reaction kinetics was examined by time-resolved transient absorption or fluorescence spectroscopy, respectively. The reaction between triplet benzophenone and DHI produced with unit efficiency the corresponding 6O-centered semiquinone radical, which was characterized by its characteristic transient absorption. The quenching rate constants for DHI (3.1-8.4 x 10(9) M-1 s-1) and DHICA (3.3-5.5 x 10(9) M-1 s-1) were near the diffusion-controlled limit, indicating excellent antioxidant properties. Kinetic solvent effects were observed. The reactivity of synthetic melanin, assessed through the quenching rate constant of Fluorazophore-P and normalized to the number of monomer units, was more than one order of magnitude lower (2.7 x 10(8) M-1 s-1) than that of its precursors. The trend of the quenching rate constants, i.e. DHI > DHICA approximately alpha-tocopherol > melanin, along with the preferential solubility of DHICA in aqueous environments, serves to account for several experimental results from biochemical studies on the inhibition of lipid peroxidation by these natural antioxidants.  相似文献   

10.
The quenching of the benzophenone triplet by lysozyme and its constituent amino acids in aqueous solutions have been studied. Native lysozyme quenches the benzophenone triplet with a high rate constant, 4 x 10(9) M-1 s-1. The quenching process takes place with production of significant amounts of free ketyl radicals, phi ketyl = 0.56, but with a very low benzophenone consumption yield (0.022). The consumption yield is considerably smaller than that observed for the free amino acids. This difference can be explained in terms of a dominant back hydrogen transfer to the protein in the disproportionation of the free radicals produced. Reduced and carboxymethylated lysozyme shows a higher quenching rate (7.8 x 10(9) M-1 s-1) and a larger benzophenone consumption yield (0.07). The deactivation of the benzophenone triplet by the native protein leads to its inactivation, with a quantum yield of 0.01. Tryptophan and arginine residues are destroyed with a quantum yield of 0.01. In the modified enzyme tyrosine and methionine groups are also consumed.  相似文献   

11.
Vitamin B6 (pyridoxine, 1) and its derivatives: pyridoxal (2), pyridoxal 5-phosphate (3) and pyridoxamine (4) are important natural compounds involved in numerous biological functions. Pyridoxine appears to play a role in the resistance of the filamentous fungus Cercospora nicotianae to its own abundantly produced strong photosensitizer of singlet molecular oxygen (1O2), cercosporin. We measured the rate constants (kq) for the quenching of 1O2 phosphorescence by 1-4 in D2O. The respective total (physical and chemical quenching) kq values are: 5.5 x 10(7) M-1 s-1 for 1; 7.5 x 10(7) M-1 s-1 for 2, 6.2 x 10(7) M-1 s-1 for 3 and 7.5 x 10(7) M-1 s-1 for 4, all measured at pD 6.2. The quenching efficacy increased up to five times in alkaline solutions and decreased approximately 10 times in ethanol. Significant contribution to total quenching by chemical reaction(s) is suggested by the degradation of all the vitamin derivatives by 1O2, which was observed as declining absorption of the pyridoxine moiety upon aerobic irradiation of RB used to photosensitize 1O2. This photodegradation was completely stopped by azide, a known physical quencher of 1O2. The pyridoxine moiety can also function as a redox quencher for excited cercosporin by forming the cercosporin radical anion, as observed by electron paramagnetic resonance. All B6 vitamers fluoresce upon UV excitation. Compounds 1 and 4 emit fluorescence at 400 nm, compound 2 at 450 nm and compound 3 at 550 nm. The fluorescence intensity of 3 increased approximately 10 times in organic solvents such as ethanol and 1,2-propanediol compared to aqueous solutions, suggesting that fluorescence may be used to image the distribution of 1-4 in Cercospora to understand better the interactions of pyridoxine and 1O2 in the living fungus.  相似文献   

12.
The photobehavior of complexes of the type Pt(diimine)(mes)2 is investigated (where diimine = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (tmp), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), and 4,7-diphenyl-1,10-phenanthroline (dpp) and mes = the mesityl (2,4,6-trimethylphenyl) anion). For all compounds studied, solution RT emission is observed to be weak and excited-state lifetimes are found to be short (< or = 20 ns) regardless of solvent choice. Evidence is presented for energy-transfer quenching of Pt(dpp)(mes)2 luminescence in toluene by dissolved O2 (primarily producing singlet oxygen) with an observed quenching rate constant of kq > or = 1.3 x 10(9) M-1 s-1. Electron-transfer quenching is also observed in the presence of 3,5-dinitrobenzonitrile, yielding a quenching rate constant of kq > or = 1.6 x 10(9) M-1 s-1. The latter observation suggests that phase Pt(II) systems may have future value as excited-state reductants. All of the complexes display a much more intense and longer-lived luminescence in the solid state at room temperature. Several possible explanations for this dependence on phase are proposed, with the most probable mechanism involving radiationless deactivation in solution via rotation of the o-methyl groups of the mesityl ligands.  相似文献   

13.
The 4,6-bis(10-mesityl-5,15-di-p-tolylporpyrinyl)dibenzothiophene (H4DPSN) free base was obtained in five steps from commercially available materials. The metalation of DPSN2- with zinc(II), copper(II), and palladium(II) led to three new homobimetallic systems, (Zn)2DPSN, (Cu)2DPSN, and (Pd)2DPSN, respectively. The cofacial structures of these molecules offer the possibility of having dioxygen molecules inside the cavity for a period of time, allowing dynamic (collisional) phosphorescence quenching to be more efficient. The bimolecular excited-state deactivation rate constant for deactivation by dioxygen (kQ: (Pd)2DPB, 2.98x10(9); (Pd)2DPSN, 3.99x10(9); (Pd)2DPX, 6.94x10(9); (Pd)TPP, 8.95x10(9); (Pd)2DPS, 8.95x10(9) M-1 s-1) of (Pd)2DPSN, which exhibits an intense phosphorescence at 699 nm, was compared to those observed for (Pd)TPP, (Pd)2DPS, (Pd)2DPX, and (Pd)2DPB (TPP2-=tetraphenylporphyrin dianion, DPS4-=4,6-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]dibenzothiophene tetraanion, DPX4-=4,5-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]-9,9-dimethylxanthene tetraanion, and DPB4-=1,8-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]biphenylene tetraanion). These collision-induced deactivation data were interpreted by estimating a series of physical parameters such as the surface area and bisporphyrin radii, the diffusion coefficient of the bismacrocycles, and the theoretical deactivation efficiency for the five compounds addressing the role of steric hindrance of the macrocycles on each other and the aryl groups at the meso positions. For sensing purposes, (Pd)2DPX is characterized by a Stern-Volmer constant kSV of 2.91x10(6) M-1, placing the lower detection limit for [O2] in solution at 0.58 ppm, which is better than that for (Pd)TPP (kSV=2.31x10(6) M-1; lower detection limit of 0.73 ppm), the classically used monoporphyrin complex.  相似文献   

14.
Studies of acrylamide quenching of tryptophan (Trp) fluorescence, photochemistry, and photoionization have been conducted. Quenching of Trp fluorescence in aqueous solution by addition of acrylamide in the concentration range 0.0-0.5 M was measured and resulted in a Stern-Volmer quenching constant of KSV = 21 +/- 3 M-1. Photolysis experiments were performed in which Trp was photolyzed at 295 nm in the presence of varying concentrations of acrylamide. The loss of Trp was monitored using reverse-phase high performance liquid chromatography (RP-HPLC) and was observed to follow first order kinetics. Production of N-formylkynurenine (NFK) was observed by RP-HPLC in irradiated Trp samples both in the presence and absence of added acrylamide. In addition, no new photochemical product was detected. This was taken as evidence that acrylamide did not alter the photochemical pathway but just reduced the reaction rate as expected for a physical quenching mechanism. Plotting the reciprocal of photolysis rate constant versus acrylamide concentration produced a Stern-Volmer constant for quenching of Trp photochemistry of KSV = 6 +/- 2 M-1. The KSV values for both fluorescence quenching and photolysis quenching were thus large, implying efficient quenching of both processes by acrylamide. Assuming an excited singlet state lifetime of 2.8 ns, the calculated second-order quenching rate constants for fluorescence and photolysis were kq = 7.5 x 10(9) and 2.1 x 10(9) M-1 s-1 respectively. The possible involvement of photoionization in the photolysis mechanism was investigated by studies of acrylamide quenching of voltage transients produced by xenon flash lamp excitation of Trp at aqueous/teflon or aqueous/mica interfaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The heme in horseradish peroxidase (HRP) was replaced by phosphorescent Pt‐mesoporphyrin IX (PtMP), which acted as a phosphorescent marker of oxygen quenching and allowed comparison with another probe, Pd‐mesoporphyrin IX (Khajehpour et al. (2003) Proteins 53, 656–666). Benzohydroxamic acid (BHA), a competitive inhibitor of the enzyme, was also used to monitor its effects on phosphorescence quenching. With the addition of BHA, in the presence of oxygen, the phosphorescence intensity of the protein increased. In contrast, the addition of BHA, in the absence of oxygen, reduced the phosphorescence intensity of the protein. Kd= 18 μM when BHA binds to PtMP‐HRP. The effect of BHA can be explained by two factors: ( 1 ) BHA reduces the accessibility of O2 to the protein interior and ( 2 ) BHA itself quenches the phosphorescence. Consistent with this, the oxygen quenching of the phosphorescence of PtMP‐HRP gave a quenching constant of kq= 234 mm Hg?1 s?1 in the absence of BHA and kq= 28.7 mm Hg?1 s?1 in the presence of BHA. The quenching rate of BHA is 4000 s?1. The relative quantum yield of the phosphorescence of the Pt derivative is about six times that of the Pd derivative, whereas the phosphorescence lifetime is approximately eight times shorter. The high quantum yield and suitable lifetime make Pt‐porphyrins appropriate as sensors of O2 diffusion and flexibility in heme proteins.  相似文献   

16.
Proteins bearing colored prosthetic groups, such as the heme group in hemoglobin or the bilin group in c-phycocyanin, quench singlet oxygen by interactions at the apoprotein and the prosthetic group levels. In both proteins, chemical modification of the chromophore constitutes only a minor reaction pathway. While total deactivation of singlet oxygen takes place with rate constants of 4.0 x 10(9) and 4.2 x 10(8) M-1 s-1 for hemoglobin and phycocyanin, respectively, the bleaching of the chromophore takes place with rate constants of 3.2 x 10(6) and approximately 1 x 10(7) M-1 s-1. Irradiation of phycocyanin with red light bleaches the chromophore with low yields (approximately 0.8 x 10(-4)). Part of this bleaching is mediated by singlet oxygen produced by the irradiation of the bilin group. The low relevance of the singlet oxygen pathway is compatible with a low quantum yield (approximately 10(-3)) of free singlet oxygen production after irradiation of the protein.  相似文献   

17.
Triplet-state properties of 1,4,8,11,15,18,22,25-octa-n-butoxyphthalocyanine and its zinc derivative were determined for the first time. The T1 state of the metal-free phthalocyanine was characterized by a short lifetime (tau T = 17 microseconds) and low quantum yield (phi T = 0.095), and quenching of the triplet by O2 occurred with a bimolecular rate constant (kT sigma = 1.3 x 10(8) M-1 s-1) that is indicative of an endogonic reaction. The zinc complex (ZnPc(OBu)8) was markedly better as a triplet photosensitizer with respect to both tau T (60 microseconds) and phi T (0.5). Quenching by O2 produced singlet oxygen with nearly 100% efficiency, and kT sigma (1.7 x 10(9) M-1s-1) was close to the spin-statistical diffusion-controlled limit. Phosphorescence measurements showed the energy of the T1 state of ZnPc(OBu)8 to be 100 kJ/mol, which is 6 kJ/mol above the 1 delta g state of O2. These photoproperties, together with Q-band absorption maxima in the mid-700 nm range indicate that metal-centered 1,4,8,11,15,18,22,25-octaalkoxyphthalocyanines have excellent potential as sensitizers in photodynamic therapy.  相似文献   

18.
谢剑炜  许金钩  陈国珍 《化学学报》1995,53(10):972-977
本文首次报道了将敏化和猝灭同时偶合在同一体系中的敏化/猝灭室温磷光新方法。体系中, CTAB胶束一方面增强α-溴代萘的室温磷光发射、α-溴代萘和联乙酰的三重态-三重态能量转移效率, 另一方面起到猝灭α-溴代萘敏化联乙酰发射的室温磷光的作用。CTAB对联乙酰的猝灭反应由三重态-三重态能量转移速率限制,求得α-溴代萘敏化联乙酰的三重态-三重态能量转移速率常数为1.76×10^9(mol.dm^-^3)^-^1s^-^1, CTAB对联乙酰的猝灭常数为7.82×10^7(mol.dm^-^3)^-^1s^-^1。详细研究了实验条件, 实现了猝灭法测定联乙酰,检测限达2.8×10^-^8mol.dm^-^3。  相似文献   

19.
A general method for the determination of the activation (ka), deactivation (kd), and initiation (ki) rate constants in atom transfer radical processes is reported. The method involves the monomer trapping techniques and the analytical solution of the persistent radical effect. For tert-butyl 2-bromopropionate, using ATRP catalyst [CuI(dNbpy)2][Br] and methyl methacrylate in CH3CN at 22 degrees C, the values of ka, kd, and ki were determined to be (9.4 +/- 0.6) x 10-3 M-1 s-1, (8.5 +/- 1.2) x 106 M-1 s-1 and (5.5 +/- 0.9) x 104 M-1 s-1, respectively. The determined initiation rate constant was in good agreement with the literature value (6.0 x 104 M-1 s-1), confirming the validity of the proposed approach. For methyl 2-bromopropionate, under the same conditions, ka, kd, and ki values were found to be (26 +/- 5.9) x 10-3 M-1 s-1, (29 +/- 7.3) x 106 M-1 s-1, and (5.7 +/- 1.6) x 104 M-1 s-1, respectively.  相似文献   

20.
A cationic carotenoid derivative (GRP-carotenal) was synthesized by the reaction of Girard's reagent P and beta-apo-8'-carotenal. The singlet-oxygen quenching constants for GRP-carotenal were 1.3 +/- 0.1 x 10(10) and 1.0 +/- 0.1 x 10(10) M-1 s-1 in acetonitrile and in detergent micelles, respectively. Photosensitized damage to K562 leukemia cells from cis-di(4-sulfonatophenyl)diphenylporphine, hypericin and protoporphyrin IX was inhibited by GRP-carotenal under conditions where beta-apo-8'-carotenal, beta-carotene and crocetin were ineffective. The unique cytoprotective properties of GRP-carotenal, relative to the other carotenoids studied, could not be explained by the differences in the cell content of the various carotenoids or by the changes in the cell content of the photosensitizers used. Photosensitizer fluorescence from labeled K562 cells was reduced by GRP-carotenal but not by the other carotenoids studied. The novel photoprotective properties of GRP-carotenal may be due to its subcellular distribution. In photosensitizer-containing detergent micelles, novel properties of GRP-carotenal were not apparent. None of the carotenoids studied reduced photosensitizer fluorescence or singlet-oxygen generation. Singlet-oxygen quenching by GRP-carotenal and by beta-apo-8'-carotenal were roughly the same. Crocetin has a singlet-oxygen quenching constant that is about a factor of five lower. Singlet-oxygen quenching by beta-carotene was limited by its aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号