首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 958 毫秒
1.
A simple, rapid and sensitive method was developed for the simultaneous quantification of chlorogenic acid (CGA) and caffeic acid (CA) in rat plasma using a high-performance liquid chromatography system coupled to a negative ion electrospray mass spectrometric analysis. The plasma sample preparation was a simple deproteinization by the addition of two volumes of acetonitrile followed by centrifugation. The analytes and internal standard ferulic acid were separated on an Intersil C8-3 column (5 mm; 250 x 2.1 mm) with acetonitrile/0.05% triethylamine solution (70:30, v/v) as mobile phase at a flow rate of 0.2 mL/min with an operating temperature of 30 degrees C. Detection was performed on a quadrupole mass spectrometer equipped with an electrospray ionization (ESI) source operated in selected ion monitoring (SIM) mode. Negative ion ESI was used to form deprotonated molecules at m/z 353 for chlorogenic acid, m/z 179 for caffeic acid, and m/z 193 for the internal standard ferulic acid. Linear detection responses were obtained for CGA concentrations ranging from 0.005 to 2.0 microg/mL and for CA concentrations ranging from 0.010 to 2.0 microg/mL and the lower limits of quantitation (LLOQs) for CGA and CA were 0.005 and 0.01 microg/mL, respectively. The intra- and inter-day precisions (RSD%) were within 9.0% for both analytes. Deviation of the assay accuracies was within +/-10.0% for both analytes. Their average recoveries were greater than 88.0%. Both analytes were proved to be stable during all sample storage, preparation and analytic procedures. The method was successfully applied to the pharmacokinetic study of CGA and CA following an intravenous dose of 5 mL/kg mailuoning injection to rats.  相似文献   

2.
A simple and sensitive high-performance liquid chromatography (HPLC) method has been developed for the determination of chlorogenic acid (3-O-caffeoyl-D-quinic acid) in plasma and applied to its pharmacokinetic study in rabbits after administration of Flos Lonicerae extract. Plasma samples are extracted with methanol. HPLC analysis of the extracts is performed on a C(18) reversed-phase column using acetonitrile-0.2% phosphate buffer (11:89, v/v) as the mobile phase. The UV detector is set at 327 nm. The standard curves are linear in the range 0.0500-1.00 microg/mL (r = 0.9987). The mean extraction recovery of 85.1% is obtained for chlorogenic acid. The interday precision (relative standard deviation) ranges from 5.0% to 7.5%, and the intraday precision is better than 9.0%. The limit of quantitation is 0.0500 microg/mL. The plasma concentration of chlorogenic acid shows a C(max) of 0.839 +/- 0.35 microg/mL at 34.7 +/- 1.1 min and a second one of 0.367 +/- 0.16 microg/mL at 273.4 +/- 39.6 min.  相似文献   

3.
A sensitive and specific ultra-performance liquid chromatography-tandam mass spectrometry method for the quantitation of paclitaxel is established. A 200 microL human plasma sample is spiked with 13C6-labeled paclitaxel as an internal standard and extracted with 1.3 mL of tert-butyl methyl ether. The chromatographic separation is achieved within 2 min on a C18 column with methanol-0.1% aqueous formic acid (75:25, v/v) as a mobile phase at a flow rate of 0.4 mL/min. Multiple reaction monitoring mass transitions of m/z 876.2 to 307.9 and 882.2 to 313.9 are measured for paclitaxel and the internal standard, respectively. For paclitaxel at the concentrations of 1.021, 5.105, and 10.21 microg/mL in human plasma, the extraction recoveries are 105.87%, 103.91%, and 100.39%, respectively. The linear quantitation range of the method is 0.1021-20.42 microg/mL in human plasma with a correlation coefficient greater than 0.999. The intra- and inter-day accuracy for paclitaxel at 1.021, 5.105, and 10.21 microg/mL levels in human plasma fell in the ranges of 95.01-99.23% and 95.29-101.28%, and the intra- and inter-day precision were in the ranges of 6.37-10.88% and 7.21-9.05%, respectively. This method is successfully applied to the determination of the half-life of paclitaxel in human plasma.  相似文献   

4.
A validated reversed-phase high-performance liquid chromatographic (RP-HPLC) method was developed for the determination of bergenin in rat plasma. Bergenin in rat plasma was extracted with methanol, which also acted as a deproteinization agent. Chromatographic separation of bergenin was performed on a C(18) column, with a mobile phase of methanol-water (22:78, v/v) at a flow-rate of 0.8 mL/min and an operating temperature of 40 degrees C, and UV detection was set at 220 nm. The calibration curve was linear over the range 0.25-50 microg/mL (r = 0.9990) in rat plasma. The limit of quantification was 0.25 microg/mL using a plasma sample of 100 microL. The extraction recoveries were 83.40 +/- 6.02, 81.49 +/- 2.40 and 72.51 +/- 2.64% at concentrations of 0.5, 5 and 50 microg/mL, respectively. The intra-day and inter-day precision and accuracy were validated by relative standard deviation (RSD%) and relative error (RE%), which were in the ranges 3.74-9.91 and -1.6-8.0%. After intravenous administration to rats at the dose of 11.25 mg/kg, the plasma concentration-time curve of bergenin was best conformed to a two-compartment open model. The main pharmacokinetic parameters indicated that bergenin exhibited a wide distribution and moderate elimination velocity in rat.  相似文献   

5.
Eslicarbazepine acetate (BIA 2-093) is a novel central nervous system drug undergoing clinical phase III trials for epilepsy and phase II trials for bipolar disorder. A simple and reliable chiral reversed-phase HPLC-UV method was developed and validated for the simultaneous determination of eslicarbazepine acetate, oxcarbazepine, S-licarbazepine and R-licarbazepine in human plasma. The analytes and internal standard were extracted from plasma by a solid-phase extraction using Waters Oasis HLB cartridges. Chromatographic separation was achieved by isocratic elution with water-methanol (88:12, v/v), at a flow rate of 0.7 mL/min, on a LichroCART 250-4 ChiraDex (beta-cyclodextrin, 5 microm) column at 30 degrees C. All compounds were detected at 225 nm. Calibration curves were linear over the range 0.4-8 microg/mL for eslicarbazepine acetate and oxcarbazepine, and 0.4-80 microg/mL for each licarbazepine enantiomer. The overall intra- and interday precision and accuracy did not exceed 15%. Mean relative recoveries varied from 94.00 to 102.23% and the limit of quantification of the assay was 0.4 microg/mL for all compounds. This method seems to be a useful tool for clinical research and therapeutic drug monitoring of eslicarbazepine acetate and its metabolites S-licarbazepine, R-licarbazepine and oxcarbazepine.  相似文献   

6.
高效液相色谱法测定大鼠血浆中的原儿茶酸   总被引:3,自引:0,他引:3  
《色谱》2007,25(2):207-210
建立了大鼠血浆中原儿茶酸含量测定的高效液相色谱方法。采用的色谱柱为DiamondsilTM C18 柱(150 mm×4.6 mm,5 μm);流动相为乙腈-水(体积比为9∶91,用H3PO4 调pH至2.5);流速1.2 mL/min;检测波长260 nm;内标为对羟基苯甲酸。原儿茶酸的线性范围为0.050~3.20 mg/L,线性相关系数为0.9978,最低定量限为0.050 mg/L,日内和日间测定的精密度(以相对标准偏差表示)均低于7.0%,准确度(以相对误差表示)为-1.4%~2.6%;在0.050,0.40,3.20 mg/L低、中、高3个添加浓度水平下,血浆样品的提取回收率分别为83.4%,87.3%,91.1%。该方法简便,灵敏,准确,适用于大鼠体内原儿茶酸的药物动力学研究。  相似文献   

7.
A simple, sensitive and selective RP-HPLC method has been developed for quantification of nodakenin in rat plasma. Nodakenin in rat plasma was extracted with acetonitrile, which also acted as a deproteinization agent. Chromatographic separation of nodakenin was performed on an analytical Diamonsil ODS C18 column, with a mobile phase of MeOH-H2O (1:1, v/v) at a flow-rate of 1.0 mL/min, and UV detection was set at 330 nm. The calibration curve was linear over the range 0.2-12.0 microg/mL (R2 = 0.9995) in rat plasma. The lower limit of detection and quantification were 0.01 and 0.1 microg/mL, respectively, using the rat plasma sample. The extraction recoveries were 77.36 +/- 4.56, 82.89 +/- 1.84 and 81.66 +/- 2.49% at concentrations of 1.0, 5.0 and 10.0 microg/mL, respectively. The intra- and inter-day precision and accuracy were validated by relative standard deviation and relative error, which were in the ranges 5.07-5.83 and 3.95-6.29%, respectively. After i.v. administration to rats at a single dose of 40 mg/kg, the plasma concentration-time curve of nodakenin was best conformed to a two-compartment open model. This assay method has been successfully applied to the study of the pharmacokinetics of nodakenin in rats.  相似文献   

8.
A simple and sensitive high-performance liquid chromatographic (HPLC) method is developed for the determination of osthole in rat plasma and applied to a pharmacokinetic study in rats after administration of Fructus Cnidii extract. After addition of fluocinonide as an internal standard, plasma samples are extracted with diethyl ether. HPLC analysis of the extracts is performed on a Hypersil ODS2 analytical column, using methanol-0.4% acetic acid (65:35, v/v) as the mobile phase. The UV detector is set at 322 nm. The standard curve is linear over the range 0.0520-5.20 microg/mL (r = 0.9979). The mean extraction recoveries of osthole at three concentrations were 81.0%, 91.2%, and 90.7%, respectively. The intra- and interday precisions have relative standard deviations from 1.9% to 4.9%. The limit of quantitation is 0.0520 microg/mL. The HPLC method developed can easily be applied to the determination and pharmacokinetic study of osthole in rat plasma after the animals are given the Fructus Cnidii extract. The plasma concentration of osthole from six rats showed a Cmax of 0.776 +/- 0.069 microg/mL at Tmax of 1.0 +/- 0.3 h.  相似文献   

9.
As a prerequisite to the determination of pharmacokinetic parameters of icariin in rats, an HPLC method using UV detection was developed and validated. Icariin and the internal standard, quercetin, were extracted from plasma samples using ethyl acetate after acidification with 0.05 mol/L NaH2PO4 solution (pH 5.0). Chromatographic separation was achieved on an Agilent XDB Cls column (250 x 4.6 mm id, 5 microm) equipped with a Shim-pack GVP-ODS C18 guard column (10 x 4.6 mm id, 5 microm) using a mobile phase of ACN/water/acetic acid (31:69:0.4 v/v/v) at a flow rate of 1.0 mL/ min. Detection was at 277 nm. The calibration curve was linear from 0.05 to 100.0 microg/mL with 0.05 microg/mL as the lower LOQ (LLOQ) in plasma. The intra- and interday precisions in terms of RSD were lower than 5.7 and 7.8% in rat plasma, respectively. The accuracy in terms of relative error (RE) ranged from -1.6 to 3.2%. The extraction recoveries of icariin and quercetin were 87.6 and 80.1%, respectively. The main pharmacokinetic parameters for rats were determined after a single intravenous administration of 10 mg/kg icariin: t1/2, 0.562 +/- 0.200 h; AUC0-infinity, 8.73 +/- 2.23 microg x h/mL; CLToT, 20.10 +/- 5.80 L/kg x h; Vz, 1.037 +/- 0.631 L/kg; MRT0-infinity, 0.134 +/- 0.040 h; and Vss, 0.170 +/- 0.097 L/kg.  相似文献   

10.
A high-performance liquid chromatographic (HPLC) method was developed for the first time to simultaneously quantify syringin and chlorogenic acid in rat plasma using wavelength-transfer technology. The analysis was performed on a Diamonsil C(18) column (200 x 4.6 mm i.d., 5 microm particle size) with isocratic mobile phase consisting of acetonitrile-0.05% phosphoric acid (12:88, v/v). The linear ranges were 0.20-10 and 0.25-30 microg/mL, respectively. The lower limits of quantification were 0.20 and 0.25 microg/mL, respectively. The method was shown to be reproducible and reliable with intraday precision below 8.5 and 6.1%, interday precision below 7.1 and 5.5%, accuracy within +/-7.1 and +/-8.6%, and mean extraction recovery excess of 92.1 and 80.9%, respectively, which were all calculated from the blank plasma sample spiked with syringin and chlorogenic acid at three concentrations of 0.20, 1.0 and 6.0 microg/mL for syringin and 0.25, 2.0 and 20 microg/mL for chlorogenic acid. This method was validated for specificity, accuracy and precision and was successfully applied to the pharmacokinetic study of syringin and chlorogenic acid in rat plasma after intravenous administration of Aidi lyophilizer.  相似文献   

11.
A new, simple and sensitive pre-column high-performance chromatographic method for the determination of diabetes marker d-glucose, 1,5-anhydro-d-glucitol and related compounds is reported. Sugars (d-glucose, d-galactose, d-mannose, sucrose and arabinose) were derivatized with benzoic acid (BA) at 80 degrees C for 60 min. l-Fucose, fructose, d-lactose, l-rhamnose, arabinose and ascorbic acid were not reacted. Sugar alcohols (xylitol, erythritol, mannitol, sorbitol myo-inositol) were also derivatized with BA at 80 degrees C for 60 min. The fluorescence derivatives were separated on a TSK amide 80 column (4.6 mm i.d. x 250 mm, 5 microm) with acetonitrile-50 mm acetate buffer (pH 5.6; 4:96, v/v) as the mobile phase. The detection wavelength of beizoic acid derivatives was lambda(ex) 275 nm and lambda(em) 315 nm. The detection limits of sugars were 10-80 microg/mL. The calibration graphs were linear up to 10 mg/mL. The relative standard deviations of 500 microg/mL sugars were 7.0-7.3%. The proposed method was compared with the enzymatic photometric glucose analysis method (Glucose B-Test II Wako). The correlation coefficient was 0.83 (n = 20) and y = 0.82x + 5.91, where y and x are concentrations in microg/mL obtained by the proposed pre-column HPLC and enzyme-photometric method, respectively. The detection limits of sugar alcohols were 100-1000 ng/mL. The calibration graphs were linear to 50 microg/mL and relative standard deviations of 10 microg/mL were 7.2-8.2%. The 1,5-AG data by the proposed method was also compared with the enzymatic photometric 1,5-AG analysis method (Rana AG 1,5-AG determination kit, Nihon Kayaku) and good correlation (r = 0.91, n = 20) was also obtained. The proposed method was applied to the simultaneous determination of d-glucose, 1,5-AG and related sugar alcohols in serum from healthy males.  相似文献   

12.
A simple and selective HPLC assay was developed and utilized for determination of human plasma protein binding of baicalin. The method involved solid-phase extraction and reversed-phase chromatographic separation with a mobile phase of acetonitrile-0.02 mol/L phosphate buffer (pH 2.5; 25:75, v/v) and UV detection at 276 nm. The standard curve for baicalin was linear over the concentration range 0.1-20 microg/mL and the limit of detection was 0.02 microg/mL. The absolute recovery was greater than 76%. The intra-day and inter-day variations were less than 10%. Ultrafiltration technique was applied to determining the plasma protein binding of baicalin in human plasma. Results show the plasma protein binding of baicalin was in the range 86-92% over all the concentrations studied and the protein binding association constant was determined to be 1.21 x 10(5) L/mol at 4 degrees C.  相似文献   

13.
A rapid and simple reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed for determination of myrislignan in rat plasma after intravenous administration. The analytes extracted from plasma samples by solid-phase extraction were successfully carried out on a Diamonsiltrade mark ODS C(18) column (250 x 4.6 mm i.d., 5 microm) with an RP(18) guard column (8 x 4.6 mm i.d., 5 microm) and a mobile phase of MeOH-H(2)O (4:1, v/v). The UV detector was set at a single wavelength of 270 nm. The linear ranges of the standard curves were 0.5-30.0 microg/mL with the correlation coefficients greater than 0.9992. The lower limits of detection and quantification were 0.1 and 0.3 microg/mL for myrislignan. Intra- and inter-day precisions were 2.4-7.5 and 1.3-5.7%, respectively. The extraction recovery from plasma was more than 90%. This assay method has been successfully used to study the pharmacokinetics of myrislignan in rats.  相似文献   

14.
A novel ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS) method has been established for the determination of a newly synthesized epothilone D analog (AV-EPO-106) in human plasma. The plasma samples were prepared by liquid-liquid extraction with cold tert-butyl methyl ether. The chromatographic separation was achieved within 5 min on a C(18) column with water-methanol (10:90, v/v) as mobile phase at a flow-rate of 0.8 mL/min. Mass transition of m/z 568.2 to 386.1 was measured for AV-EPO-106 in positive atmospheric pressure chemical ionization mode. A detailed validation of the method was performed as per the USFDA guidelines. For AV-EPO-106 at the concentrations of 1.0, 5.0 and 10.0 microg/mL in human plasma, the absolute extraction recoveries were 86.17, 85.24 and 85.69%, respectively. The linear quantification range of the method was 0.10-20.0 microg/mL in human plasma with linear correlation coefficients greater than 0.999. The intra-day and inter-day accuracy for AV-EPO-106 at the levels of 1.0, 5.0 and 10.0 microg/mL in human plasma fell in the ranges of 98.25-100.47 and 94.19-97.25%, and the intra- and inter-day precision were in the ranges of 4.75-6.30% and 8.89-10.45%, respectively. The method was successfully applied to quantify AV-EPO-106 in human plasma to determine the half-life of this compound in human plasma.  相似文献   

15.
A simple, sensitive and specific high-performance liquid chromatography method is described for simultaneous determination of rosuvastatin (RST) and gemfibrozil (GFZ) in human plasma using celecoxib as an internal standard (IS). The assay procedure involved extraction of RST, GFZ and IS from plasma into acetonitrile. Following separation and evaporation of the organic layer the residue was reconstituted in the mobile phase and injected onto an X-Terra C(18) column (4.6 x 150 mm, 5.0 microm). The chromatographic run time was less than 20 min using flow gradient (0.0-1.60 mL/min) with a mobile phase consisting of 0.01 M ammonium acetate:acetonitrile:methanol (50:40:10, v/v/v) and UV detection at 275 nm. Nominal retention times of RST, GFZ and IS were 6.7, 13.9 and 16.4 min, respectively. Absolute recovery of both analytes and IS was greater than 90%. The lower limit of quantification (LLOQ) of RST and GFZ was 0.03 and 0.30 microg/mL, respectively. Linearity was excellent (r(2) = 0.999) in the 0.03-10 microg/mL and 0.3-100 microg/mL ranges for RST and GFZ, respectively. The inter- and intra-day precisions in the measurement of RST quality control (QC) samples 0.03, 0.09, 2.50 and 8.00 microg/mL were in the range 2.37-9.78% relative standard deviation (RSD) and 0.92-10.08% RSD, respectively. Similarly, the inter- and intra-day precisions in the measurement of GFZ quality control (QC) samples 0.30, 0.90, 25.0 and 80.0 microg/mL were in the ranges 2.79-6.27 and 0.96-9.69% RSD, respectively. Accuracies in the measurement of QC samples for RST and GFZ were in the range 85.43-107.23 and 84.98-102.35% respectively, of the nominal values. RST and GFZ were stable in the array of stability studies viz., bench-top, auto-sampler and freeze-thaw cycles. Stability of RST and GFZ was established for 1 month at -80C. The application of the assay in an oral pharmacokinetic study in rats co-administered with RST and GFZ is described.  相似文献   

16.
A simple, sensitive and selective high-performance liquid chromatographic (HPLC) method with UV detection (306 nm) was developed and validated for determination of tenatoprazole, a novel proton-pump inhibitor, in dog plasma. Tenatoprazole and internal standard (pantoprazole) were extracted into diethyl ether and separated using an isocratic mobile phase of 10 mm phosphate buffer (pH4.7)-acetonitrile (70:30, v/v) on a Diamonsil C(18) column (150 x 4.6 mm, 5 microm). The retention times for tenatoprazole and internal standard were 7.1 and 12.3 min, respectively. No endogenous interferences were observed. This HPLC method was fully validated. The lower limit of quantitation was 20 ng/mL, with a relative standard deviation of less than 20%. A linear range of 0.02-5.0 microg/mL was established. The interday and intraday precisions were within RSD 13.4-10.1 and 4.6-1.4%, respectively. This method developed can be easily applied to the pharmacokinetic study of tenatoprazole in dog plasma after oral administration of an enteric-coated capsule. The plasma concentration of tenatoprazole from six dogs showed a mean C(max) of 2.63 microg/mL at T(max) of 1.89 h. The bioavailability of tenatoprazole was improved by administration of enteric-coated capsule.  相似文献   

17.
For pharmacokinetic and toxicokinetic purpose a simple HPLC-UV method has been developed and validated for the estimation of DRF-4848, a novel COX-2 inhibitor in rat plasma. A liquid-liquid extraction was used to extract DRF-4848 and internal standard (IS, DRF-4367) from rat plasma. The analysis was performed on a C(18) column with UV detection at 285 nm. The isocratic mobile phase, 0.01 M potassium dihydrogen ortho phosphate (pH 3.2) and acetonitrile (50:50, v/v) was run at a flow rate of 1 mL/min. The retention times of DRF-4848 and IS were 6.8 and 11.2 min, respectively. Absolute recovery for analyte and IS was >80% from rat plasma. A linear response was observed over a concentration range 0.1-20 microg/mL. The lower limit of quantification (LLOQ) of DRF-4848 was 0.1 microg/mL. The inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.1, 0.3, 8.0 and 15.0 microg/mL, were in the range 1.74-8.70% relative standard deviation (RSD) and 0.75-8.43% RSD, respectively. Accuracy in the measurement of QC samples was in the range 93.29-116.51% of the nominal values. Analyte and IS were stable in the battery of stability studies viz., benchtop, autosampler, long-term and freeze/thaw cycles.  相似文献   

18.
A simple and sensitive high-performance liquid chromatography method is developed for the simultaneous determination of (3,4-dihydroxyphenyl)-lactic acid (Dhpl) and protocatechuic aldehyde (Pal) in rat serum after oral administration of Radix Salviae miltiorrhizae extract. Serum samples are acidified with hydrochloric acid and extracted with ethyl acetate. Analysis of the extract is performed on a reversed-phase column and a mobile phase of 0.02% phosphoric acid-acetonitrile (91:9, v/v) with UV detection at 280 nm. Standard curves are linear in the range of 1.47-456.96 microg/mL for Dhpl and 0.124-7.936 microg/mL for Pal. For both regression coefficients, r(2) is greater than 0.993. Mean recovery is determined to be 75.23% and 84.06%, respectively, by analyzing serum standard containing 7.14, 57.12, and 228.48 microg/mL of Dhpl and 0.124, 0.992, and 3.968 microg/mL of Pal. The intraday precision (relative standard deviation) ranges from 3.91% to 12.03% at concentrations of 1.43, 57.12, and 228.48 microg/mL for Dhpl and 3.79% to 8.12% at concentrations of 0.124, 0.992, and 3.968 microg/mL for Pal. The interday precision (relative standard deviation) ranges from 5.06% to 9.93% for Dhpl and 3.05% to 10.00% for Pal, respectively, at the same three concentrations. This validated assay is applied to the determination of Dhpl and Pal concentrations and used to take a limited view of the pharmacokinetic profile in rat serum after oral administration of Radix Salviae miltiorrhizae extract.  相似文献   

19.
A new, simple, and reproducible method for determination of carboxylic acid metabolite of clopidogrel in human plasma has been developed. After liquid-liquid extraction in acidic medium with chloroform, samples were quantified on a Nova-pak C(8), 5 microm column using a mixture of 30 mM K(2)HPO(4)-THF-acetonitrile (pH = 3, 79:2:19, v/v/v) as mobile phase with UV detection at 220 nm. The flow rate was set at 0.9 mL/min. Ticlopidine was used as internal standard and the total run time of analysis was about 12 min. The method was linear over the range of 0.2-10 microg/mL of clopidogrel metabolite in plasma (r(2) > 0.999). The within-day and between-day precision values were in the range 1.0-4.8%. The limit of quantification of the method was 0.2 microg/mL. The method was successfully used to study the pharmacokinetics of clopidogrel in healthy volunteers.  相似文献   

20.
A capillary gas chromatographic method was developed for determining 1-p-(3.3-dimethyl-1-triazeno) benzoic acid in the plasma and urine of cancer patients under pharmacokinetic study. The drug was extracted with ethyl acetate and methylated with diazomethane. Octadelane (10 microg/ml) was added as internal standard. The separation was carried out on an OV-1 quartz capillary column, 15 m x 0.32 mm (0.52 microm), with high-purity nitrogen as carrier gas and flame ionization detector (FID) as detector. The column temperature was held at 130 degrees C for 9 min and then programmed to 240 degrees C, at a rate of 35 degrees C/min. The temperature of both injector and detector was 260 degrees C. The standard curve was linear from 0.4 to 40 microg/mL in plasma, and from 0.8 to 20 microg/mL in urine, with correlation coefficients of 0.9979 and 0.9932. The relative standard deviations (RSD) were less than 9.7%. The minimum recovery of this method was 81.8%. This method was applied to the pharmacokinetic studies of 1-p-(3.3-dimethyl-1-triazeno) benzoic acid in cancer patients after a single dose (i.v.) of 160, 420 or 760 mg/m(2) was administered. They all conformed to the two-compartment open model and showed linear pharmacokinetics. The excretion of this drug in the urine was minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号