首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Makrofol-N polycarbonate was irradiated with carbon (70 MeV) and copper (120 MeV) ions to analyze the induced effects with respect to optical and structural properties. In the present investigation, the fluence for carbon and copper beams was kept in the range of 1×1011– 1×1013 ions/cm2 to study the swift heavy ion induced modifications. UV–VIS, FTIR and XRD techniques were utilized to study the induced changes. The analysis of UV–VIS absorption studies revealed that the optical energy gap was reduced by 17% on carbon irradiation, whereas the copper beam leads to a decrease of 52% at the highest fluence of 1×1013 ions/cm2. The band gap can be correlated to the number of carbon atoms, N, in a cluster with a modified Robertson's equation. In copper (120 MeV) ions irradiated polycarbonate, the number of carbon atoms in a cluster was increased from 63 to 269 with the increase of ion fluence from 0 to 1×1013 ions/cm2, whereas N is raised only up to 91 when the same polymer films were irradiated with carbon (70 MeV) ions under similar conditions. FTIR analysis showed a decrease in almost all characteristic absorption bands under irradiation. The formation of hydroxyl (? OH) and alkene (C?C) groups were observed in Makrofol-N at higher fluence on irradiation with both types of ions, while the formation alkyne end (R? C≡ CH) group was observed only after copper ions irradiation. The radii of the alkyne production of about 3.3 nm were deduced for copper (120 MeV) ions. XRD measurements show a decrease in intensity of the main peak and an increase of the average intermolecular spacing with the increase of ion fluence, which may be attributed to the structural degradation of Makrofol-N on swift ion irradiation.  相似文献   

2.
The self-standing films of polymethyl methacrylate (PMMA) were irradiated under vacuum with 50?MeV lithium (Li3+) and 80?MeV carbon (C5+) ions to the fluences of 3?×?1014, 1?×?1015, 1?×?1016 and 1?×?1017 ions µm?2. The pristine and irradiated samples of PMMA films were studied by using ultraviolet–visible (UV–Vis) spectrophotometry, Fourier transform infrared, X-ray diffractrometer and atomic force microscopy. With increasing ion fluence of swift heavy ion (SHI), PMMA suffers degradation, UV–Vis spectra show a shift in the absorption band from the UV towards visible, attributing the formation of the modified system of bonds. Eg and Ea decrease with increasing ion fluence. The size of crystallite and crystallinity percentage decreases with increasing ion fluence. With SHI irradiation, the intensity of IR bands and characteristic bands of different functional groups are found to shift drastically. The change in (Eg) and (N) in carbon cluster is calculated. Shifting of the absorption band from the UV towards visible along with optical activity and as a result of irradiation, some defects are created in the polymer causing the formation of conjugated bonds and carbon clusters in the polymer, which in turn lead to the modification in optical properties that could be useful in the fabrication of optoelectronic devices, gas sensing, electromagnetic shielding and drug delivery.  相似文献   

3.
Samples of polystyrene (PS) have been irradiated with 64Cu (50 and 120 MeV) and 12C (70 MeV) ion beams (fluence=1011 to 1013 ions cm?2) in order to study the induced modifications using UV‐VIS and FTIR spectroscopy. UV spectra of irradiated samples reveal that the optical band gap decreases from 4.36 to 1.46 eV in PS. The decrease in optical band gap is more pronounced with the Cu‐ion beam due to high electronic energy loss as compared to the C ion beam. The effect of low energy (50 MeV) Cu ions on the optical properties of PS is larger than that due to high energy (120 MeV) Cu ions. The correlation between the optical band gap and the number of six member carbon rings inside the largest carbon clusters embedded in the network of polystyrene is discussed. FTIR spectra reveal the formation of hydroxyl, alkene, and alkyne groups in the Cu‐ion irradiated PS. Changes in the intensity of the absorption bands on irradiation with C‐ion relative to pristine samples have also been observed and are discussed.  相似文献   

4.
Polycarbonate/polystyrene bilayer films prepared by solvent-casting method were irradiated with 55 MeV carbon ion beam at different fluences ranging from 1×1011 to 1×1013 ions cm?2. The structural, optical, surface morphology and dielectric properties of these films were investigated by X-ray diffraction (XRD), UV–visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, optical microscopy and dielectric measurements. The XRD pattern shows that the percentage of crystallinity decreases while inter-chain separations increase with ion fluence. UV–visible spectroscopy shows that the energy band gap decreases and the number of carbon atoms in nanoclusters increase with the increase in ion fluences. The refractive index is also found to decrease with the increase in the ion fluence. Optical microscopy shows that after irradiation polymeric bilayer films color changes with ion fluences. The FTIR spectra evidenced a very small change in cross-linking and chain scissoring at high fluence. Dielectric constant decreases while dielectric loss and AC conductivity increase with ion fluences.  相似文献   

5.
A wide variety of material modifications in polymers have been studied by using ion irradiation techniques. Extensive research has focused on to Swift Heavy Ions (MeV’s energy), probably because of good controllability and the large penetration length in polymers. High energy ion irradiation tends to damage polymers significantly by electronic excitation and ionization. It may result into the creation of latent tracks and can also cause formation of radicals such as ablation, sputtering, chain scission and intermolecular cross-linking, creation of triple bonds and unsaturated bonds and loss volatile fragments. Polypropylene polymer films of thickness 50 μm were irradiated to the fluences of 1 × 1010, 3 × 1010, 1 × 1011, 3 × 1011, 6 × 1011 and 1 × 1012 ions/cm2 with Si8+ ions of 100 MeV energy from Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi and Ne6+ ions of 145 MeV to the fluences of 108, 1010, 1011, 1012 and 1013 ions/cm3 from Variable Energy Cyclotron Centre, Kolkata. Optical modifications were characterized by UV towards the red end of the spectrum with the increase of the fluence. Value of optical band gap E g shows a decreasing trend with ion fluence irradiated with both kinds of ions. Cluster size N, the number of carbon atoms per conjugation length increases with increasing ion dose. Cluster size also increases with the increase of electronic stopping power.   相似文献   

6.
Poly vinylidene chloride (PVDC) irradiated with lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver ions (120 MeV) having fluence range of 1 × 1011 ions/cm2 to 3 × 1012 ions/cm2 have been studied using different techniques i.e. XRD (X-ray diffraction), FTIR (Fourier transform infrared), UV–Visible and TGA (thermo-gravimetric analysis). In XRD analysis, the intensity of diffraction peaks of PVDC irradiated with lithium ions was enhanced at lower fluence as compared to pristine. The shift in optical absorption edge in irradiated PVDC was correlated with the decrease in optical band gap energy. The distinguishable characteristic peaks were observed due to UV–Vis analysis, in lithium irradiated samples of PVDC at higher fluences. The % age decrease in optical band gap energy for the respective ions were 30.9%, 34.16%, 81.1%, 87.02% respectively. Formation of double carbon bonds and breaking of C–O and C–Cl bonds with the release of Cl in irradiated PVDC was observed in FTIR spectra. In Thermogravimetric analysis (TGA), the % age weight loss observed for irradiated samples with increase in ion fluence was lesser than the % age weight loss observed in pristine sample.  相似文献   

7.
Shabir Ahmad  K. Asokan 《哲学杂志》2015,95(12):1309-1320
Present work focuses on the effect of swift heavy ion (SHI) irradiation of 100 MeV F7+ ions by varying the fluencies in the range of 1 × 1012 to 1 × 1013 ions/cm2 on the morphological, structural and optical properties of polycrystalline thin films of Ga10Se90-xAlx (x = 0, 5). Thin films of ~300 nm thickness were deposited on cleaned Al2O3 substrates by thermal evaporation technique. X-ray diffraction pattern of investigated thin films shows the crystallite growth occurs in hexagonal phase structure for Ga10Se90 and tetragonal phase structure for Ga10Se85Al5. The further structural analysis carried out by Raman spectroscopy and scanning electron microscopy verifies the defects or disorder of the investigated material increases after SHI irradiation. The optical parameters absorption coefficient (α), extinction coefficient (K), optical band gap (Eg) and Urbach’s energy (EU) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200–1100 nm. It was found that the values of absorption coefficient and extinction coefficient increase while the value of optical band gap decreases with the increase in ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model.  相似文献   

8.
Swift heavy ion (SHI) irradiation is an effective technique to modify the optical properties of the materials. In the present investigation, the effect of 100?MeV?Ag7+ SHI irradiation fluence on the optical properties of ZnO1?x:Nx thin films was studied. The post irradiation spectroscopic characterizations such as UV–VIS reflectance spectroscopy, Raman spectroscopy and photoluminescence (PL) spectroscopy analysis were carried out. The studies imply that when the SHI passes through the solid, the higher electronic stopping power of ions can weaken oxygen bonds in ZnO, resulting in the formation of donor defects such as oxygen vacancies and zinc interstitials. The formation of donor defects has been acknowledged through the increase in bandgap with irradiating ion fluence. The blue shift observed from the Raman spectra for the 3?×?1013 ions/cm2 fluence-irradiated films implies the existence of compressive stress in the films. The PL analysis acknowledges the formation of donor defects upon irradiation. Furthermore, it conveys that the presence of N atoms in ZnO lattice leads to the formation of a less number of defects as compared with undoped ZnO while irradiation.  相似文献   

9.
Commercially purchased CR-39 and PET polymers were irradiated by 100 MeV O7+ ions of varying fluences, ranging from 1×1011 to 1×1013 ions/cm2. The effects of swift heavy ions (SHI) on the structural, optical and chemical properties of CR-39 and PET polymers were studied using X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The XRD patterns of CR-39 show that the intensity of the peak decreases with increasing ion fluence, which indicates that the semicrystalline structure of polymer changes to amorphous with increasing fluences. The XRD patterns of PET show a slight increase in the intensity of the peaks, indicating an increase in the crystallinity. The UV-visible spectra show the shift in the absorbance edge towards the higher wavelength, indicating the change in band gap. Band gap in PET and CR-39 found to be decrease from 3.87 to 2.91 and 5.3-3.5 eV, respectively. The cluster size also shows a variation in the carbon atoms per cluster that varies from 42 to 96 in CR-39 and from 78 to 139 in PET. The FTIR spectra show an overall reduction in intensity of the typical bands, indicating the degradation of polymers after irradiation.  相似文献   

10.
The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to 1×1015 cm?2. Electrical properties of LDPE films were measured and the effect of ion bombardment on the DC conductivity, dielectric constant and loss was studied. Optically, the energy gap, the Urbach’s energy and the number of carbon atoms in a cluster were estimated for all polymer samples using the UV–Vis spectrophotometry technique. The obtained results showed slight enhancement in the conductivity and dielectric parameters due to the increase in ion fluence. Meanwhile, the energy gap and the Urbach’s energy values showed significant decrease by increasing the Ar ion fluence. It was found that the ion bombardment induced chain scission in the polymer chain causing some carbonization. An increase in the number of carbon atoms per cluster was also observed.  相似文献   

11.
The samples of polypropylene (PP) have been irradiated with 120 MeV 64Cu9+ and 70 MeV 12C5+ ion beams, with the fluence ranging from 1 × 1013 to 1 × 1011 ions/-cm−2. UV-VIS and FTIR techniques have been used to study the chemical and optical properties of these irradiated polymers. UV spectra revealed that the optical-gap energy decreases by 54 % with copper ion irradiation at the fluence of 1 × 1013 ions/cm2, whereas at the same fluence, carbon beam decreases the optical-gap energy by 20%. FTIR analysis of ion irradiated samples revealed the presence of -OH, C = O and C = C bonds. Alkyne formation has been observed only in the case of copper ion irradiation.   相似文献   

12.
Ion bombardment is a suitable tool to improve the physical and chemical properties of polymer surface. In this study UHMWPE samples were bombarded with 130 keV He ions to the fluences ranging from 1 × 1012 to 1 × 1016 cm−2. The untreated and ion beam modified samples were investigated by photoluminescence, and ultraviolet-visible (UV-vis) spectroscopy. Remarkable decrease in integrated luminescence intensity with increasing ion fluences was observed. The reduction in PL intensity with increase of ion fluence might be attributed to degradation of polymer surface and formation of defects. The effect of ion fluence on the optical properties of the bombarded surfaces was characterized. The values of the optical band gap Eg, and activation energy Ea were determined from the optical absorption. The width of the tail of the localized states in the band gap (Ea) was evaluated using the Urbach edge method. With increasing ion fluences a decrease in both the energy gap and the activation energy were observed. Increase in the numbers of carbon atoms (N) in a formed cluster with increasing the He ion fluence was observed.  相似文献   

13.
《Current Applied Physics》2010,10(4):1112-1116
Sb2S3 thin films prepared by electrodeposition on indium tin oxide coated glass substrate were irradiated with 150 MeV Ni11+ ions for various fluence in the range of 1011–1013 ions/cm2. The modifications in the structure, surface morphology and optical properties have been studied as a function of ion fluence. X-ray diffraction (XRD) analysis indicates a shift in the (2 4 0) peak position towards lower diffraction angle and a decrease in grain size with increase in ion fluence. Presence of microcracks due to irradiation induced grain splitting effect has been observed from the SEM micrograph at higher ion fluence. The optical absorbance spectrum revealed a shift in the fundamental absorption edge and the band gap energy increased from a value of 1.63 eV for as-deposited films to 1.80 eV for the films irradiated with 1013 ions/cm2.  相似文献   

14.
Titanium substrate was coated with hydroxyapatite by radiofrequency magnetron sputtering (rf-magnetron sputtering) technique and subjected to swift heavy ion (SHI) irradiation of 125 MeV with Si9+ at fluences of 1 × 1010, 1 × 1011 and 1 × 1012 ions/cm2. The glancing incidence X-ray diffraction (GIXRD) analysis confirmed the HAp phase of the irradiated film. There was a considerable decrease in crystallinity and particle size after irradiation. In addition, DRS-UV reflectance spectra revealed a decrease in optical band gap (Eg) from 5.2 to 4.6 eV. Wettability of biocompatible materials plays an important role in biological cells proliferation for tissue engineering, drug delivery, gene transfer and bone growth. HAp thin films irradiated with 1 × 1011 ions/cm2 fluence showed significant increase in wettability. While the SHI irradiated samples exhibited enhanced bioactivity, there was no significant variation in cell viability. Surface roughness, pores and average particle size were analyzed by atomic force microscopy (AFM).  相似文献   

15.
In this paper, we present the impact of swift heavy ion beam irradiation on the structural, optical and electronic properties of SnO2 thin films. Thin films were deposited using the pulsed laser deposition technique on Al2O3 substrates. Atomic force microscopy, X-ray diffraction, UV–visible absorption and temperature-dependent resistivity measurements were performed to explore the morphological, structural, optical and electronic properties of the as-deposited and irradiated samples. The peak intensity of the (200) peak was found to decrease monotonously with increasing irradiation fluence. The band gap energy of the 1×1011 ion/cm2 irradiated sample was found to increase. The electrical resistivity of the samples showed a continuous increase with the irradiation fluence.  相似文献   

16.
The effect of high electronic energy deposition on the structure, surface topography, optical properties, and electronic structure of cadmium sulfide (CdS) thin films have been investigated by irradiating the films with 100 MeV Ag+7 ions at different ion fluences in the range of 1012–1013 ions/cm2. The CdS films were deposited on glass substrate by thermal evaporation, and the films studied in the present work are polycrystalline with crystallites preferentially oriented along (002)-H direction. It is shown that swift heavy ion (SHI) irradiation leads to grain agglomeration and hence an increase in the grain size at low ion fluences. The observed lattice compaction was related to irradiation induced polygonization. The optical band gap energy decreased after irradiation, possibly due to the combined effect of change in the grain size and in the creation of intermediate energy levels. Enhanced nonradiative recombination via additional deep levels, introduced by SHI irradiation was noticed from photoluminescence (PL) analysis. A shift in the core levels associated with the change in Fermi level position was realized from XPS analysis. The chemistry of CdS film surface was studied which showed profound chemisorption of oxygen on the surface of CdS.  相似文献   

17.
Abstract

Au/n-GaAs Schottky Barrier Diodes (SBDs) have been fabricated on LEC grown silicon doped (100) GaAs single crystals. The SBDs were irradiated using high energy (120 MeV) silicon ion with fluences of 1 × 10 11 and 1 × 1012 ions/cm2. Current-Voltage (I-V) characteristics of unirradiated and irradiated diodes were analyzed. The change in the reverse leakage current increases with increasing ion fluence. This is due to the irradiation induced defects at the interface and its increase with the fluence. The diodes were annealed at 573 and 673 K. to study the effect of annealing. The rectifying behavior of the irradiated (fluence of 1 × 1012 ions/cm12) SBDs improves upon as the annealing temperature increases and is attributed to the in situ self-annealing during irradiation. Scanning Electron Microscopic analysis was carried out on the irradiated samples to delineate the projected range and to observe defects.  相似文献   

18.
The passage of heavy ions in a track detector polymeric material produces lattice deformations. These deformations may be in the form of latent tracks or may vanish by self annealing in time. Heavy ion irradiation produces modifications in polymers in their relevant electrical, chemical and optical properties in the form of rearrangement of bonding, cross-linking, chain scission, formation of carbon rich clusters and changes in dielectric properties etc. Modification depends on the ion, its energy and fluence and the polymeric material. In the present work, a study of the dielectric response of pristine and heavy ion irradiated Makrofol-KG polycarbonate is carried out. 40 μm thick Makrofol-KG polycarbonate films were irradiated to various fluences with Si8+ ions of 100 MeV energy from Pelletron at Inter University Accelerator Centre (IUAC), New Delhi and Ne6+ ions of 145 MeV from Variable Energy Cyclotron Centre, Kolkata. On irradiation with heavy ions dielectric constant (ɛ′) decreases with frequency where ɛ′ increases with fluence for both the ions. Variation of loss factor (tan δ) with frequency for pristine and irradiated with Si ions reveals that tan δ increases as the frequency increases. Tan δ also increases with fluence. While Ne irradiated samples tan δ shows slight variation with frequency as well as with fluence. Tan δ has positive values indicating the dominance of inductive behavior.   相似文献   

19.
Polyvinyl alcohol films were irradiated to 90 MeV O 6+ and 150 MeV Si 14+ ions at fluence ranging from 1010 to 1012 ions/cm2. The observed changes in optical energy gap of this polymer have been investigated and results are tried to be explained in terms of energy transferred by the incident ions. It has been noticed that the value of optical energy gap decreases with increasing energy loss during the ion–polymer interaction process.  相似文献   

20.
PbS quantum dots of average size 10 nm are encapsulated in a matrix (polyvinyl alcohol (PVA)) following chemical route. They are irradiated with 160 MeV Ni12+ ion beam with fluences 1012-1013 ions/cm2. Red shift in the absorption response in the optical absorption spectra reveal size enhancement of the quantum dots after irradiation and was confirmed by transmission electron microscopy (TEM). Photoluminescence (PL) study was carried out with excitation wavelength 325 nm on both unirradiated and irradiated samples at different fluences and fluence-dependent surface states and excitonic emission is observed in the PL study. The Huang-Rhys coupling constant decreases significantly after swift heavy ion (SHI) irradiation and shows a decreasing trend with increase in ion fluence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号