首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ferrous gluconate dihydrate (FeC12H22O14⋅2H2O), was prepared and its thermal decomposition was studied by means of simultaneous thermal analysis, supplemented with a two probe d.c. electrical conductivity measurements under the atmospheres of static air, dynamic air and dynamic nitrogen. Under all the atmospheres final product was found to be α-Fe2O3 with FeO, γ-Fe2O3, Fe3O4 etc. as probable intermediates. γ-Fe2O3 was formed under the atmosphere of dynamic air containing water vapour. γ-Fe2O3 thus synthesised was characterised for its structure, morphology, thermal and magnetic behaviour. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Studies were undertaken of phase transitions of iron oxide obtained from iron oxide-hydroxides of type α-, β-, γ- and δ-FeOOH, and used as a support of ruthenium catalysts Ru/Fe2O3, employed in the water-gas shift reaction. In asprepared pure supports and ruthenium catalysts the main phase was α-Fe2O3. After use in the water-gas shift reaction, the support showed the presence of different phases of iron oxide. The most active Ru/Fe2O3 catalysts prepared on the basis of α- and δ-FeOOH, after use in the water-gas shift reaction, revealed the presence of Fe3O4 or a mixture of phases Fe3O4 and γ-Fe2O3. The least active catalysts, prepared on the basis of β- and γ-FeOOH, contained a solid solution of Fe3O4-γ-Fe2O3 with traces of α-Fe2O3.  相似文献   

3.
The thermal stability of two amino acid-(tyrosine and tryptophan) coated magnetite and their corresponding precursors, [Fe2IIIFeII(Tyr)8]·9H2O and [Fe2IIIFeII(Trp)2(OH)4](NO3)2·8H2O (where tyrosine=Tyr and tryptophan=Trp), was analyzed in comparison with free amino acids. The complexes present a lower thermal stability relative to the free ligand, due to the catalytic effect introduced by the iron cation and the presence of NO3 groups. The presence of NO3 group determines also a different degradation’s stoichiometry of the amino acid anion comparative with the one expressed by the free ligand molecule. The amino acid bonded to magnetite decomposes in two steps, its presence inducing an increasing of γ-Fe2O3→Fe2O3 conversion temperature.  相似文献   

4.
Perovskite-type oxides with A, A′=La, Ba, Sr; B, B′=Mn, Fe, Co were investigated by means of thermal analysis, solid electrolyte cells, and X-ray diffraction. Partial molar thermodynamic quantities are determined and their relations with O/M stoichiometry, unit cell volume, and phase stability were studied. The absolute values of partial molar enthalpies of perovskite-type oxides increase with increasing O/M stoichiometries and with decreasing unit cell volumes of the cubic perovskite-type structure, corresponding to higher chemical stabilities. The substitution of Ba for La, Ba for Sr, Co for Fe, and Fe for Mn lead to increase in unit cell volumes and decrease in absolute values of ΔH 0. The ΔH 0 values of the cobaltites/ferrites range from −33.5 kJ/mol for SrCo0.8Fe0.2O3−x to −72.5 kJ/mol for La0.2Sr0.8Co0.6Fe0.4O3−x, and of the manganates up to −132 kJ/mol for Ca0.5Sr0.5Mn0.8Fe0.2O3−x .  相似文献   

5.
In this paper we present a study on the synthesis of Fe(III) oxide, by thermal decomposition of some complex combinations of Fe(III) with carboxylate type ligands, obtained in the redox reaction between some polyols (ethylene glycol (EG), 1,2-propane diol (1,2PG), 1,3-propane diol (1,3PG) and glycerol (GL)) and NO3 ions (from ferric nitrate). Fe2O3 was obtained by thermal decomposition of the synthesized metal-organic precursors at low temperatures. γ-Fe2O3 was obtained as nanoparticles at 300°C, while at higher temperatures α-Fe2O3 starts to crystallize and becomes single phase at ~500°C. The formation of the metal-organic precursors and their thermal decomposition were studied by thermal analysis and FTIR spectroscopy.  相似文献   

6.
Oxidation of iodide ion from an air-saturated solution under natural sunlight (900±50 W m−2) on the surfaces of TiO2, ZnO, Fe2O3, MoO3 and CeO2 enhances by 6 to 12-fold on application of a cathodic bias of −0.2 to −0.3 V (vs NHE) to the semiconductors; light, the semiconductor and dissolved oxygen are essential for iodine generation. The semiconductors under an anodic bias of +0.2 to +0.3 V (vs NHE) fail to oxidize iodide ion from air-saturated solution under sunlight. Under cathodic bias, semiconductor mixtures like TiO2-ZnO, TiO2-Fe2O3 and ZnO-Fe2O3 show enhanced photocatalytic activity, indicating improved charge separation in oxide mixtures. The mechanism of photocatalysis under cathodic bias is discussed.   相似文献   

7.
Electrochromism is defined as the persistent but reversible optical change (usually transmission) produced electrochemically. The preparation by the sol-gel process of thin films made of amorphous or crystalline nanoparticles of WO3, V2O5, Nb2O5, TiO2, CeO2, Fe2O3 and mixed compounds such as WO3−TiO2, CeO2−TiO2, CeO2−SnO2, have opened remarkable new opportunities for obtaining electrochromic layers exhibiting large optical transmission variation in the UV, visible or infrared range and acceptable kinetics under H+ or Li+ insertion. In this paper we give an overview of what has been recently achieved in this field, with emphasis for cathodic electrochromic coatings of Nb2O5 and TiO2 composition. Finally we stress the future developments in this fast growing field.  相似文献   

8.
A good precursor is foremost in the preparation of nanosized metal or mixed metal oxides. In the present study a novel precursor, cobalt zinc fumarato-hydrazinate Co0.5Zn0.5Fe2(C4H2O4)3·6N2H4 has been prepared which decompose at a much lower temperature to give nanosized mixed-metal oxides. X-ray investigations, confirms the formation of single spinel phase. The FTIR spectra show N-N stretching vibration at 965 cm−1 which confirms the bidentate bridging hydrazine. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential scanning calorimetric analysis. The precursor shows two-step dehydrazination followed by decarboxylation to form Co0.5Zn0.5Fe2O4, the chemical analysis of the sample is corroborative of this.  相似文献   

9.
A novel combustion method of employing poly(ethylene glycol) with the precursor in a fixed ratio for the synthesis of ultrafine γ-Fe2O3 through a self-propagating combustion synthesis is reported. Four different precursors viz. ferrous hydroxide, ferrous oxalate dihydrate, ferric 8-hydroxyquinoline and ferric acetylacetonate are employed in this study for the conversion of these precursors to ultrafine g-Fe2O3 particles. The as synthesized γ-Fe2O3 samples are characterized by XRD, SEM and thermal techniques. A case study for the synthesis of γ-Fe2O3 employing ferric acetyl acetonate as precursor is reported. The importance of employing thermal analysis techniques in understanding the combustion synthesis is envisaged. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Nanostructured iron–titanium mixed oxides with different Fe/Ti ratios were prepared by sol–gel methods under different preparative conditions. When equal molar amounts of Fe and Ti ions were employed, the product calcined at 500 °C showed an X-ray diffraction pattern that resembles Fe2Ti3O9. On the other hand, lower Fe/Ti ratios favored the formation of Fe2TiO5 while higher ratios resulted in free α-Fe2O3 and TiO2. Besides the effect of the Fe/Ti ratio, the composition of the final product was dependent on the preparative conditions and the calcination temperature. Enhancing the gelation process by heating or by employing an acid catalyst favored the formation of Fe2TiO5 at relatively low temperatures. Compared with the corresponding pure oxides, the prepared iron–titanium mixed oxides showed modified textural characteristics which were also dependent on the composition and the calcination temperature. The mixed oxides showed higher catalytic activity in the oxidation of methanol than their corresponding pure oxides with a noticeable enhanced oxidation potential forming methyl formate and carbon dioxide.  相似文献   

11.
Zusammenfassung Es werden tensieudiometrische und r?ntgenographische Untersuchungen amγ-Fe2O3 mitgeteilt, die zeigen, da?γ-Fe2O3 bei 300° im Hochvakuum thermisch nicht merkbar zu zerlegen ist. Der von Girard und Chaudron und anderen beobachtete Zerfall desγ-Fe2O3 in Fe3O4 wird auf die Gegenwart von reduzierenden Stoffen (aus Schlauch, Fett usw.) zurückgeführt und das Auftreten von CO2 spektroskopisch bewiesen. Mit der Reduktion geht eine Umlagerung desγ-Fe2O3 inα-Fe2O3 parallel, ein Befund, der auch durch magnetische Untersuchungen erh?rtet wird. Platin-Mohr ist als Katalysator derγ-Fe2O3-Zersetzung bei 300° unwirksam. Der Jahrhundertstiftung unserer Hochschule sind wir für Bereitstellung von Mitteln zur Durchführung dieser Untersuchungen zu gro?em Dank verpflichtet. Die Literatur über diese Arbeitsreihe ist zusammengestellt bei Simon und Fehér, Z. Elektrochem.38, 137 (1932).  相似文献   

12.
The structural features and magnetic properties of composite materials Fe2O3-SiO2 consisting of γ-Fe2O3 nanoparticles in an amorphous porous matrix of SiO2 were considered. The studied samples were synthesized by the sol-gel method. The structure of γ-Fe2O3-SiO2 depending on the heating temperature was studied by electron microscopy, X-ray diffraction analysis, ESR and IR spectroscopy. Magnetic measurements were performed on a SQUID magnetometer in the range 2–350 K.  相似文献   

13.
Relaxation of photoexcited states in nanosized semiconductor particles of iron oxides was studied by femtosecond laser photolysis techniques: (1) in an aqueous colloidal solution of -Fe2O3; (2) in Fe2O3 particles in the Nafion® cation-exchange polymeric membrane; (3) in an aqueous colloid of -Fe2O3; and (4) in nanocrystals of ferrihydrite 5Fe2O3·9H2O, which are contained in the protein shell of ferritine. The photoinduced excited states relax at the femtosecond and picosecond time scale. The spectra of photoinduced absorption of photoexcited states and the relaxation dynamics in the studied iron oxides weakly depend on the structure and surface environment of a nanoparticle.  相似文献   

14.
TiO2-SiO2-Fe2O3 films as new UV absorption material were prepared through an epoxide derived sol–gel route. The films were formed at room temperature by doping of a little amount of γ-Fe2O3 nanoparticles in TiO2-SiO2. The obtained films show advantages such as high stability, efficient absorption in the UV region, high transparency in the visible range, and low oxidation catalytic activity to organic materials. It was found that 2.3 nm γ-Fe2O3 nanoparticles doped films exhibit stronger UV absorption than the films doped with 5.1 nm particles because of the increased grain strain of the nanoparticles with smaller size. These advantages of the films guarantee the broad application of this inorganic UV absorption film in the protection of heat sensitive organic materials such as artworks.  相似文献   

15.
An infrared spectroscopic study of the diatomic molecules O2, N2, NO and H2 adsorbed under different conditions on Fe2O3 has been performed.Complex patterns of absorption on both α-Fe2O3 and γ-Fe2O3 activated in O2 at high temperature are assigned to vibrations of two different chemisorbed O2 species.N2 molecules do not interact with “oxygen rich” α-Fe2O3 surfaces, but give N2O? and N2O22? species when chemisorbed on evacuated surfaces.NO molecules give complex patterns of absorption, depending on the gas pressure. Three different types of nitrate structures can be identified, as well as NO, NO? and cis-N2O2 chemisorbed species. Chemisorbed water molecules are formed by contact of H2 with Fe2O3 surfaces even at room temperature.  相似文献   

16.
研究了共溶剂、电子受体和表面改性等因素对TiO2光催化萘直接合成α-萘酚反应的影响.纳米TiO2催化剂在紫外光照射下产生·OH,使得萘羟基化得到α-萘酚.在TiO2体系中加入Fe3+,Fe2+,Fe3++H2O2和Fe2++H2O2时,均可有效提高萘转化率和α-萘酚收率,其中以体系中加入Fe3++H2O2时,α-萘酚收...  相似文献   

17.
Nearly monodispersed La3+ doped γ-Fe2O3 nanoparticles were synthesized on an ultra-large scale of about 60 g in a single reaction by a low temperature sol–gel route. The nanoparticles were obtained by the reaction of FeCl2 and La(NO3)3 in ethanol solution with propylene oxide to form the sol, followed by the boiling of the sol solution. The La3+ doping promotes the phase transformation temperature of γ-Fe2O3 nanoparticles from 350 to 650 °C by the La3+ doping induced enhancement of phase transformation activation energy. This large scale synthesis strategy offers important advantages over other conventional routes for the preparation of undoped and doped γ-Fe2O3 nanoparticles. These guarantee the promising application of this route in the industrial production.  相似文献   

18.
A general sol–gel strategy was established for the synthesis of metal ions doped γ-Fe2O3 nanoparticles with narrow particle size distribution. The unique chemistry of the route guarantees the simple preparation procedure for the preparation of doped γ-Fe2O3 nanoparticles, which includes the boiling of the ethanolic solution of precursor salts after the addition of gelation agent, and the following drying of the obtained sol solution. On the other hand, it guarantees the production of the nanoparticles with nearly monodispersed state and median size of about 5 nm on an ultra large scale of about 60 g in a single reaction. The doping of metal ions in γ-Fe2O3 allows the great promotion of phase transformation temperature from γ-Fe2O3 to α-Fe2O3. Due to the advantages of this strategy over other routes, it is very promising to be applied in the industrial production of undoped and doped γ-Fe2O3 nanoparticles as a general route.  相似文献   

19.
This study was conducted to investigate the effect of a photocatalysis/oxidant system for the treatment of humic acid and hazardous heavy metals in aqueous solutions. Hydrogen peroxide, ozone, and potassium peroxodisulfate were tested as oxidants. The effect of oxidant concentration was conducted with a pH of 7, a UV intensity of 64 W, and a TiO2 dosage of 0.3 g L−1. The oxidant addition in the UV/TiO2 system enhanced the degradation efficiency of humic acid and hazardous heavy metals compared to no addition of an oxidant. The addition of oxidants over the amounts of H2O2 50 mg L−1, O3 20 g m−3, and K2S2O8 50 mg L−1 inhibits the system efficiency. The negative effect of higher oxidant concentrations likely results from OH radical quenching caused by the excess oxidant. Therefore, the optimal dosages of oxidants such as a hydrogen peroxide, ozone, and potassium peroxodisulfate were found to be 50 mg L−1, 20 g m−3, and 50 mg L−1, respectively. The degradation efficiency of UV/TiO2/oxidant systems for the removal of humic acid and hazardous heavy metals was much greater in the UV/TiO2/H2O2 system using H2O2 as an oxidant.  相似文献   

20.
The magnetocaloric effect (MCE) of aqua suspensions based on superfine magnetite (Fe3O4), hematite (α-Fe2O3), maghemite (γ-Fe2O3), samarium ferrite (SmFe2O4) and gadolinium ferrite (GdFe2O4) as well as of magnetite-based ferrofluids was calorimetrically determined in the range of the temperatures from 283 to 253 K. MCE has a positive magnitude for all investigated systems except a hematite-based system. For the suspensions on the basis of MCE temperature dependence it was determined that superfine magnetite transformed into α-Fe2O3 at the temperature above 328 K in contrast to monocrystal magnetite. For aqua suspensions of samarium ferrite and gadolinium ferrite and magnetite-based ferrofluids MCE temperature dependence has an extreme behavior which is connected with a second-order phase transition. For the first time it is established that the magnetocaloric effect (MCE) is greatly increased when the magnet is a nanosized material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号