首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper brings attention to hyperchaos anti-synchronization between two identical and different hyperchaotic systems by using adaptive control. The sufficient conditions for achieving the anti-synchronization of two hyperchaotic systems are derived based on Lyapunov stability theory. An adaptive control law and a parameter update rule for unknown parameters are introduced such that the hyperchaotic Chen system is controlled to be the hyperchaotic Lü system. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

2.
A novel robust control scheme is proposed to realize anti-synchronization of two different hyperchaotic systems with external uncertainties. By introducing a compensator, the novel robust control scheme is developed based on nonlinear control and adaptive control, which can eliminate the influence of uncertainties effectively and achieve adaptive anti-synchronization of the two different hyperchaotic systems globally and asymptotically with an arbitrarily small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions are derived as well. Finally, numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme.  相似文献   

3.
Based on the nonlinear control theory, the anti-synchronization between two different hyperchaotic systems is investigated. Through rigorous mathematical theory, the sufficient condition is drawn for the stability of the error dynamics, where the controllers are designed by using the sum of the relevant variables in hyperchaotic systems. Numerical simulations are performed for the hyperchaotic Chen system and the hyperchaotic Lü system to demonstrate the effectiveness of the proposed control strategy.  相似文献   

4.
In this paper, we investigate the reduced-order anti-synchronization of uncertain chaotic systems. Based upon the parameters modulation and the adaptive control techniques, we show that dynamical evolution of third-order chaotic system can be anti-synchronized with the canonical projection of a fourth-order chaotic system even though their parameters are unknown. The techniques are successfully applied to two examples: hyperchaotic Lorenz system (fourth-order) and Lorenz system (third-order); Lü hyperchaotic system (fourth-order) and Chen system (third-order). Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

5.
In this present paper, we elaborated the concept of the reduced-order anti-synchronization of uncertain chaotic systems. Based upon the parameters modulation and the adaptive control techniques, we show that dynamical evolution of third order chaotic system can be anti-synchronized with the projection of a fourth-order chaotic system even though their parameters are unknown. The techniques are successfully applied to several examples: hyperchaotic Chen system (fourth-order) and Lü system (third-order), theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

6.
Based on the active control theory, synchronization and anti-synchronization between two identical chaotic systems is investigated. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. Through rigorous mathematical theory, the sufficient condition is drawn for the stability of the error dynamics, where the controllers are designed by using the sum of the relevant variables in chaotic systems. Numerical simulations are performed for Chen hyperchaotic dynamical system to demonstrate the effectiveness of the proposed control strategy.  相似文献   

7.
In this paper, we demonstrate that anti-synchronization can coexist in two different hyperchaotic systems with terms of parametric uncertainty and external disturbances using the robust active sliding mode control method. By using rigorous mathematical theory, the sufficient condition is drawn for the stability of error dynamics based on the Lyapunov stability theory, where the controllers are designed by using the sum of the relevant variables in hyperchaotic systems. Numerical results are presented to justify the theoretical analysis.  相似文献   

8.
This paper addresses problems of control and synchronization for a new modified hyperchaotic Lü system with uncertain parameters. This new modified uncertain hyperchaotic Lü system is stabilized to its unique unstable equilibrium by using adaptive control. Furthermore, an adaptive control law and a parameter estimation update law are derived to synchronize two identical modified hyperchaotic Lü systems with uncertain parameters. Numerical examples are proposed to demonstrate and verify the theoretical analysis.  相似文献   

9.
Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces another novel type of chaos synchronization – full state hybrid projective synchronization (FSHPS), which includes complete synchronization, anti-synchronization and projective synchronization as its special item. Based on the Lyapunov’s direct method, the general FSHPS scheme is given and illustrated with Lorenz chaotic system and hyperchaotic Chen system as examples. Numerical simulations are used to verify the effectiveness of the proposed scheme.  相似文献   

10.
This paper aims at synchronization and anti-synchronization between Lu chaotic system, a member of unified chaotic system, and recently developed Bhalekar–Gejji chaotic system, a system which cannot be derived from the member of unified chaotic system. These synchronization and anti-synchronization have been achieved by using nonlinear active control since the parameters of both the systems are known. Lyapunov stability theory is used and required condition is derived to ensure the stability of error dynamics. Controller is designed by using the sum of relevant variables in chaotic systems. Simulation results suggest that proposed scheme is working satisfactorily.  相似文献   

11.
This study demonstrates that synchronization and anti-synchronization can coexist in two-degree-of-freedom dissipative gyroscope system with input nonlinearity. Because of the nonlinear terms of the gyroscope system, the system exhibits complex motions containing regular and chaotic motions. Using the variable structure control technique, a novel control law is established which guarantees the hybrid projective synchronization including synchronization, anti-synchronization and projective synchronization even when the control input nonlinearity is present. By Lyapunov stability theory with control terms, two suitable sliding surfaces are proposed to ensure the stability of the controlled closed-loop system in sliding mode, and two variable structure controllers (VSC) are designed to guarantee the hitting of the sliding surfaces. Numerical simulations are presented to verify the proposed synchronization approach.  相似文献   

12.
In this paper, we propose a robust anti-synchronization scheme based on multiple-kernel least squares support vector machine (MK-LSSVM) modeling for two uncertain chaotic systems. The multiple-kernel regression, which is a linear combination of basic kernels, is designed to approximate system uncertainties by constructing a multiple-kernel Lagrangian function and computing the corresponding regression parameters. Then, a robust feedback control based on MK-LSSVM modeling is presented and an improved update law is employed to estimate the unknown bound of the approximation error. The proposed control scheme can guarantee the asymptotic convergence of the anti-synchronization errors in the presence of system uncertainties and external disturbances. Numerical examples are provided to show the effectiveness of the proposed method.  相似文献   

13.
Adaptive synchronization of a hyperchaotic system with uncertain parameter   总被引:1,自引:0,他引:1  
This paper addresses the synchronization problem of two Lü hyperchaotic dynamical systems in the presence of unknown system parameters. Based on Lyapunov stability theory an adaptive control law is derived to make the states of two identical Lü hyperchaotic systems with unknown system parameters asymptotically synchronized. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization schemes.  相似文献   

14.
A simple multi-scroll hyperchaotic system   总被引:2,自引:0,他引:2  
We propose a simple autonomous hyperchaotic system that can generate multi-scroll attractors. The proposed system has a canonical structure, one control parameter, and a switching-type nonlinearity. If multiple breakpoints are added to the system nonlinearity, multi-scroll behavior can be obtained. We numerically demonstrate hyperchaotic behavior of the proposed system, under different nonlinearities, as its control parameter is changed. Furthermore, we study hyperchaos in the proposed system when it assumes a fractional order, and demonstrate that hyperchaotic behavior can be obtained in systems less than fourth order. Throughout the study, hyperchaos is verified by examining the Lyapunov spectrum, where the presence of multiple positive Lyapunov exponents in the spectrum is indicative of hyperchaos.  相似文献   

15.
In this paper, a four-dimensional (4D) continuous autonomous hyperchaotic system is introduced and analyzed. This hyperchaotic system is constructed by adding a linear controller to the 3D autonomous chaotic system with a reverse butterfly-shape attractor. Some of its basic dynamical properties, such as Lyapunov exponents, Poincare section, bifurcation diagram and the periodic orbits evolving into chaotic, hyperchaotic dynamical behavior by varying parameter d are studied. Furthermore, the full state hybrid projective synchronization (FSHPS) of new hyperchaotic system with unknown parameters including the unknown coefficients of nonlinear terms is studied by using adaptive control. Numerical simulations are presented to show the effective of the proposed chaos synchronization scheme.  相似文献   

16.
This letter presents chaos synchronization problem of two different hyperchaotic systems when the parameters of drive and response systems are fully unknown or uncertain. Based on Lyapunov stability theory, an adaptive control law and a parameter update rule for unknown parameters are derived such that two different high dimensional chaotic systems are to be synchronized. Hyperchaotic Chen system and Second-harmonic generation (SHG) system are taken as an illustrative example to show the effectiveness of the proposed method.  相似文献   

17.
In this work, we discuss the stability conditions for a nonlinear fractional-order hyperchaotic system. The fractional-order hyperchaotic Novel and Chen systems are introduced. The existence and uniqueness of solutions for two classes of fractional-order hyperchaotic Novel and Chen systems are investigated. On the basis of the stability conditions for nonlinear fractional-order hyperchaotic systems, we study synchronization between the proposed systems by using a new nonlinear control technique. The states of the fractional-order hyperchaotic Novel system are used to control the states of the fractional-order hyperchaotic Chen system. Numerical simulations are used to show the effectiveness of the proposed synchronization scheme.  相似文献   

18.
In this article, a partial synchronization scheme is proposed based on Lyapunov stability theory to track the signal of the delay hyperchaotic Lü system using the Coullet system based on only one single controller. The proposed tracking control design has two advantages: only one controller is adopted in our approach and it can allow us to drive the hyperchaotic system to a simple chaotic system even with uncertain parameters. Numerical simulation results are given to demonstrate the effectiveness and robustness of the proposed partial synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 125–130, 2016  相似文献   

19.
This paper is involved with the adaptive modified function projective synchronization (MFPS) problem of hyperchaotic systems with unknown parameters. Based on the Lyapunov stability theorem and adaptive control method, adaptive controllers and parameters update laws can be presented for the MFPS not only between two identical hyperchaotic systems but particularly also between two different hyperchaotic systems with fully unknown or partially unknown parameters. Moreover, the coupling strength can be automatically adapted to a updated law. Numerical simulations are presented to show the effectiveness of the proposed synchronization schemes.  相似文献   

20.
This paper discusses the synchronization and anti-synchronization of new uncertain fractional-order unified chaotic systems (UFOUCS). Based on the idea of active control, a novel active pinning control strategy is presented, which only needs a state of new UFOUCS. The proposed controller can achieve synchronization between a response system and a drive system, and ensure the synchronized robust stability of new UFOUCS. Numerical simulations of new UFOUCS show that the controller can make fractional-order unified chaotic systems (FOUCS) achieve synchronization or anti-synchronization in a quite short period and both are of good robust stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号