首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 154 毫秒
1.
简要概述了国内外同行最近二十多年来对炸药安全性精密物理实验研究认识进展历程,聚焦分析了炸药安全性研究领域一些传统流派在事故反应机理认知和反应行为建模理论方法上的通常误区。本文中还引证了本研究团队近年开展的一组分解实验进行案例点评,对非冲击点火事故反应在装药结构中的传播及反应演化行为的复杂表现背后共同的基本行为机制进行了集中解读。本文中介绍的系列实验从主导机理视角展示了非冲击点火事故演化物理图像的诸多关键细节。对典型密实炸药而言,非冲击点火反应的本质是炸药表面层燃烧反应主体行为,因高压气体产物流动与炸药间隙及基体中裂纹演化耦合,使反应烈度走向呈现极度非线性特征,同时会因主炸药的燃速特性及约束结构的变形、破裂而存在限制,使得密实炸药DDT转化难于在典型装药结构中发生。  相似文献   

2.
为了深入理解炸药裂缝燃烧演化过程中的压力增长行为,提升对事故点火下武器装药向高烈度反应转变机制的认识水平,基于炸药预置裂缝燃烧演化压力历程分析,对某HMX基PBX炸药裂缝燃烧的增压过程开展了理论计算。采用气体动力学相关理论建立了简化的炸药燃烧产物流动模型,基于一维等熵流动假设预测了不考虑黏性和摩擦阻力情况下炸药预置裂缝的燃烧压力增长过程,计算结果显示压力增长阶段与实验结果定性符合,为理解炸药裂缝燃烧的增压行为提供了一种理论解释。  相似文献   

3.
炸药燃速-压力特性是弹药安全性的关键内因,反映了炸药反应烈度增长的倾向性。为了认识PBX-1炸药在未损伤状态下的燃烧特性,发展了密闭空腔燃烧压力-炸药耗量法以及炸药燃烧速率测试方法,并对PBX-1炸药开展了燃烧实验。采用压力传感器测量了密闭燃烧器内部的压力历程,采用快速响应热电偶监测了炸药燃烧阵面时间-位置数据,获得了炸药燃烧速率并拟合出常温下PBX-1炸药热传导燃烧速率与压力的依赖关系r=(2.16±0.55)p1.08±0.06。结果表明,PBX-1炸药的压力指数大于1,燃烧速率对压力变化比较敏感,在100 MPa压力范围内燃烧速率呈指数关系,当压力超过100 MPa后燃烧变得不稳定,燃烧速率迅速增加,导致燃烧器内压力骤变。分析其主要原因是,高压下PBX-1炸药发生物理破坏,炸药燃烧比表面积增加100多倍,炸药反应烈度有经对流燃烧机制提升的趋势。  相似文献   

4.
在长管强约束条件下对HMX基PBX炸药点火实验进行了数值模拟,分析了点火方式对炸药反应演化规律的影响,获得了弱冲击点火条件下炸药反应演化过程的特征图像。针对黑火药和雷管2种点火方式,分别构建了PBX炸药黑火药点燃和冲击起爆2类实验的唯象模型和数值模拟方法,通过数值模拟获得了钢管内炸药柱反应演化进程的特征图像,柱壳膨胀历程与实验结果符合较好。研究表明,不同点火方式下炸药反应演化进程存在较大差异。如果使用雷管点火,PBX炸药会在几微秒内发生爆轰反应;而使用黑火药点火,PBX炸药会在数毫秒内从缓慢燃烧转化为剧烈爆炸,但随着壳体破裂解体,管内压力骤降,抑制了反应演化向爆轰转变。黑火药点燃条件下整个反应演化过程可以分为4个主要阶段,其中管壁附近炸药柱表面燃烧传播优先于炸药柱中心基体反应,是弱冲击点火反应演化过程的重要特征之一。  相似文献   

5.
为探究压装炸药PBX-A在较强约束条件下、在药柱一端使用点火药引燃后能否发生燃烧转爆轰,在传统DDT管的基础上重新设计了特定位置约束增强的厚壁钢柱壳管实验装置,利用多路PDV诊断技术,配套高速摄影记录对点火药引燃炸药实验过程中的柱壳膨胀、断裂特性等实验现象进行了全过程连续监测。对比由爆轰驱动的相同装药条件下实验现象及对应过程物理状态的区别,发现:爆轰实验和点火实验 的总反应时间历程存在数量级的差别;柱壳上各个测点速度历程反映出装置内部炸药反应引起的压力增长历程特征,以及炸药反应的传播过程均存在明显差异。分析表明,在较强约束条件下,典型压装炸药PBX-A在一端使用点火药引燃后的反应行为实际是以高温、高压反应产物沿装药缝隙对流,炸药表面的层流燃烧及其伴随的结构响应行为为主要表现形态;从反应压力水平及其增长的时间历程来看,炸药基体中没有形成冲击波,因而无法实现从冲击到爆轰的转变。  相似文献   

6.
为了对一种TATB基非均质炸药的预冲击起爆现象展开数值模拟研究,将基于冲击温度及压力的AWSD反应率模型耦合进二维结构网格拉氏弹塑性流体力学程序。利用炸药及其产物的冲击雨贡纽实验数据校验了未反应炸药及产物的状态方程参数,通过一维冲击起爆的模拟,标定了反应速率模型参数。模拟了炸药在弱冲击0.45 μs后跟随的强冲击波的二次冲击实验,结果表明,受预压缩区域的炸药反应变慢,到爆轰距离增长了约1 mm,与该炸药二次冲击实验减敏现象相符。模拟拐角效应时,爆轰波经过拐角后,在拐角附近形成稳定的不起爆区域,与主要成分相同的LX-17炸药的拐角效应实验的死区特征相符。数值模拟结果表明,基于冲击温度及压力的AWSD反应率模型可以较好地模拟非均质炸药预冲击减敏问题。  相似文献   

7.
以熔铸型含铝混合炸药熔奥梯铝为对象,研究铸装含铝混合炸药快速热点火后的燃烧转爆轰特性。建立了快速热点火燃烧转爆轰实验平台,由实验装置(加热装置、约束钢管、炸药)、压力测试系统、光纤测速系统组成;加热装置加热15 mm厚45钢钢板,峰值温度大于1 100 ℃,温升速率为85~95 ℃/s。开展了快速热点火带壳熔奥梯铝炸药燃烧转爆轰实验,由加热装置加热约束钢管内熔奥梯铝炸药,炸药化学反应阵面压力和传播速度分别由压电性高压压力传感器和光纤探针测定;实测阵面压力约1 GPa,传播速度最大约2 600 m/s。由光纤数据获得炸药化学反应阵面传播轨迹,通过特征线方法获得冲击形成点,半定量给出冲击形成距离大于850 mm;并比较了管体破片质量实测值与炸药完全爆轰时破片平均质量计算值,实测值远小于计算值。综合实测化学反应阵面传播速度和压力、冲击形成距离分析、破片质量比较,可确定熔奥梯铝炸药没有发生完全爆轰,其化学反应状态为爆燃。另外,采用Adams和Pack模型、CJ燃烧模型,都能够半定量的预估冲击形成距离和燃烧波后压力,为实验设计提供依据,但CJ燃烧模型的计算结果更接近于实测值。  相似文献   

8.
为研究主控点火对复合推进剂慢速烤燃响应特性的影响,设计并开展了典型复合推进剂装药慢速烤燃实验,结合数值计算和推进剂热分解失重及形貌演化过程,探讨了点火前推进剂内的温度分布情况及推进剂细观结构热损伤规律。研究发现:针对复合推进剂装药的慢速烤燃,在推进剂发生自热点火前温度较低时进行主控点火可以有效降低反应剧烈程度;随着加热温度的升高,推进剂中部分组分发生分解,导致推进剂内部温度高于壳体温度,同时推进剂中粘结剂及AP的分解会导致推进剂装药形成多孔状的结构,在点火后更易导致对流燃烧,加剧反应烈度;当壳体温度仅138 ℃时,推进剂温度最高点达到150 ℃,最高点首先出现在靠近喷管的尾部,考虑到粘结剂及AP部分分解导致的孔隙结构会加剧反应的响应烈度,主控点火温度应设定在138 ℃以下。  相似文献   

9.
提出了多元混合PBX炸药孔隙塌缩热点模型新的处理方法,构建了新的细观反应速率模型,系列数值模拟结果与实验结果均一致,表明该细观反应速率模型可较好地描述和预测炸药组分配比及颗粒度对多元混合PBX炸药冲击起爆过程的影响。PBX炸药冲击起爆过程主要受热点点火过程和燃烧反应过程共同作用:HMX占主导成分的PBXC03炸药,起爆压力低,冲击起爆过程受热点点火影响较明显,热点点火后的燃烧反应速度较快,表现为加速反应特性;TATB占主导成分的钝感PBXC10炸药,起爆压力高,冲击起爆过程主要受点火后的燃烧反应过程控制,且点火后燃烧反应速度较慢,表现为稳定反应特性。  相似文献   

10.
在一维流体动力学编码SSS程序中,利用三项式点火增长反应速率模型对钝感炸药JB-9014的反应区进行了计算。计算中,未反应炸药采用固态HOM状态方程,产物采用气态JWL状态方程,计算得到了钝感炸药JB-9014化学反应区的峰值压力、CJ压力、反应区宽度和反应时间等参数,计算结果与实验结果符合较好。分析表明,三项式点火增长反应速率模型可用于研究钝感炸药的反应区结构。  相似文献   

11.
用实验和数值模拟方法,研究在爆炸载荷下岩体内部一对平行裂纹对扩展主裂纹的影响规律。实验中,采用带有中心装药孔及预制裂纹的砂岩圆盘试件,利用由示波器、超动态应变仪及裂纹扩展计所组成的测试系统,监测主裂纹扩展速度和扩展距离;数值模拟中,采用了AUTODYN软件进行,模拟了主裂纹及两平行裂纹的扩展规律,对岩石材料,采用线性状态方程及最大拉应力失效准则,并在两平行裂纹间设置相应的观测点记录应力曲线。通过实验与数值模拟分析,得到:爆炸载荷下,紧随冲击波后的稀疏波经过两平行裂纹面反射后变成压缩波,并在两平行裂纹间产生垂直于主裂纹扩展方向的压应力,对裂纹的扩展有压制、止裂作用;而且,这种压应力的大小与两平行裂纹的间距有关,进而导致了不同的止裂效果,影响裂纹的扩展速度及最终扩展长度。  相似文献   

12.
基于Visco-SCRAM模型的侵彻装药点火研究   总被引:1,自引:0,他引:1  
针对弹体侵彻过程中装药的安全性,基于黏弹性统计裂纹力学(visco-statistical crack mechanics, Visco-SCRAM)模型计算装药整体温升、装药裂纹摩擦生热以及弹体装药与壳体摩擦生热,考察这3种机制对装药温升的贡献以及侵彻装药的点火机制,得到了装药点火对应的弹体侵彻临界初始速度。结果表明:(1)装药与弹体内壁摩擦生热对装药温升有一定贡献,随着弹体初始撞击速度的提高,摩擦生热对温升的贡献逐渐增大;(2)黏性、损伤和绝热体积变化导致的装药整体温升对装药点火的作用有限; (3)裂纹摩擦形成热点是侵彻装药点火的物理机制;(4)采用Visco-SCRAM模型可预测低强度、长脉冲载荷作用下的装药点火响应。  相似文献   

13.
实际岩石比如沉积形成的岩石往往是裂隙和孔隙并存的孔隙介质. 由于扁状的裂隙与近似球形或圆管形的孔隙具有不同的可压缩性,当孔隙介质受压时,液体会从易压缩的裂隙中挤出流入不易压缩的孔隙中,这种挤喷流会引起弹性模量的频散和能量的耗散. 着重研究了裂隙挤喷流和液体可压缩性对孔道变形的影响,推导出了动载荷作用下排水体积模量的表达式. 与挤喷流相关的裂隙附加柔度会引起排水体积模量随频率变化,使得孔隙介质呈现黏弹性. 频率越高,模量的实部越大,岩石抵抗变形的能力越强. 而模量的虚部体现了挤喷流对能量的耗散. 裂隙密度主要决定模量频散的幅度以及能量耗散的强度,且裂隙密度越大,模量频散幅度越大,能量耗散也越强. 裂隙的纵横比主要决定模量频散速率最快或能量耗散最强时对应的特征频率. 若孔隙介质中不含有裂隙,即裂隙密度是0时,排水体积模量退化为Biot理论中的排水体积模量.  相似文献   

14.
水泥试样爆炸压裂实验及裂纹分形评价   总被引:1,自引:0,他引:1  
通过室内爆炸压裂模拟实验,得到常压和20 MPa围压2种情况下的爆炸压裂效果,并对实验结果进行了对比分析,分析结果表明:围压对裂纹扩展路径、形状、弯曲度都有一定影响,与常压下的裂纹扩展情况相比,施加围压后得到的裂纹数量少、长度短、弯曲明显.在对爆炸压裂形成的裂纹进行定性描述的基础上,利用分形理论,对裂纹的分形特征进行了...  相似文献   

15.
基于多普勒测速技术的JB-9014炸药反应区结构研究   总被引:1,自引:0,他引:1  
为了解TATB基JB-9014炸药的爆轰过程,利用火炮驱动飞片加载,采用光子多普勒测速技术,对JB-9014炸药的爆轰反应区结构进行了实验研究。实验中利用火炮发射高速蓝宝石飞片冲击起爆被测炸药,在炸药后表面安装镀膜氟化锂(LiF)窗口测量炸药爆轰时的界面粒子速度,测试过程的时间分辨率小于2 ns。将粒子速度剖面对时间进行一阶求导,通过一阶导数的拐点来确定炸药反应区宽度、反应时间。研究结果表明,钝感炸药JB-9014的反应时间为(0.26±0.02)μs,对应的化学反应区宽度为(1.5±0.2)mm,反应结束点处的压力为27.3 GPa,von Neumann峰处压力为40.3 GPa。  相似文献   

16.
The creeping motion of a porous sphere at the instant it passes the center of a spherical container has been investigated. The Brinkman's model for the flow inside the porous sphere and the Stokes equation for the flow in the spherical container were used to study the motion. The stream function (and thus the velocity) and pressure (both for the flow inside the porous sphere and inside the spherical container) are calculated. The drag force experienced by the porous spherical particle and wall correction factor is determined. To cite this article: D. Srinivasacharya, C. R. Mecanique 333 (2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号