首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Mixed micelles can be formed in water between various pairs of hydrophobic solutes such as surfactants, alcohols and hydrocarbons. These systems can often be studied through the thermodynamic functions of transfer of one of the solutes, usually kept near infinite dilution, from water to an aqueous solution of the other solute. When mixed micelles are formed, these functions change significantly, and often go through extrema, in the region where the binary system micellizes or undergoes some microphase transition.Three main effects are responsible for the observed trends: pair-wise interactions between both solutes in the monomeric form, a distribution of the reference solute between the aqueous and micellar phases and a shift in the monomer-micelle equilibrium in the vicinity of the reference solute. Simple equations can be derived for these three effects which can account for the sign and magnitude of the observed trends using parameters which are derived for the most part from the two binary systems.  相似文献   

2.
The densities of methanol, ethanol, 1-propanol, 1-butanol and 1-hexanol were measured in aqueous solutions of sodium dodecylsulfate at 25°C. The partial molar volumes of the alcohols at infinite dilution in the aqueous surfactants solutions were calculated and discussed using a mass-action model for the alcohol distribution between the aqueous and the micellar phase. The partial molar volumes of the alcohols in the aqueous and in the micellar phases, and the ratios between the binding constant and the aggregation number, were calculated. The partial molar volume for all the alcohols in micellar phase is 10 cm3-mol–1 smaller than that in octane. This can be related to the strong hydrophilic interaction between the head groups of the alcohol and the micellized surfactant. From the extrapolated values of the distribution constant and the partial molar volumes in the aqueous and micellar phases, the standard partial molar volume of heptanol in micellar solutions was found to decrease with increasing surfactant concentration. The standard free energy of transfer of alcohols from water to micelles was rationalized in terms of hydrophilic and hydrophobic contributions. A model is proposed in which the empty space around each solute is assumed to be the same in the gas and liquid phases, and is used to explain the behavior of micelles in the presence of amphiphilic solutes.  相似文献   

3.
The thermodynamics of micellar solubilization of acetophenone in mixtures of two cationic surfactants [benzyldimethyltetradecylammonium chloride +trimethyltetradecylammonium chloride] has been derived from calorimetric measurements at controlled solute activity. The partition coefficient between micelles and water as well as the standard enthalpy and entropy of transfer between micelles and water were calculated. The results were compared to the case of benzylalcohol in the same cationic mixtures. For acetophenone, the variation of all thermodynamic transfer functions with micellar composition may be described by the regular solution formalism. The same conclusion has been achieved for most polar solutes in various surfactant mixtures: favorable interaction between unlike surfactants induces an unfavorable micellar solubilization. Exceptions should be found with the cases where solute solubilization induces profound micellar changes. It seems to be the case with some alcohols in the cationic surfactant mixtures studied.  相似文献   

4.
The effect of UQ0 on the micellization equilibrium of Triton X-100 has been studied by the analysis of the UV absorption spectra of Triton X-100. In the range of the UQ0 concentration investigated, the critical micelle concentration (CMC) increases at increasing of the solute concentration. The dependence of the CMC on UQ0 concentration has been used to calculate the generalized Setchenov constant. Mixing and dilution enthalpies of aqueous solutions of UQ0 and Triton X-100 were measured and used to calculate the enthalpies of transfer of UQ0 from water to Triton X-100 aqueous solutions. From the dependence of the enthalpy of transfer on surfactant concentration, the distribution constant between aqueous and micellar phase and the standard enthalpy of transfer from water to Triton X-100 micelles were evaluated along with the standard transfer free energy and entropy. All measurements were carried out at 298 K.  相似文献   

5.
The excess enthalpies of solution with respect to water of some primary and secondary alcohols in dodecyldimethylamine oxide (DDAO) micellar solutions were measured by mixing aqueous solutions of alcohols with surfactant solutions. Standard free energies, enthalpies and entropies were obtained from the distribution of alcohols between aqueous and micellar phases. It is shown that thermodynamics of transfer of secondary alcohols from aqueous to the DDAO micellar phase differ slightly from those of their corresponding primary alcohols, that the additivity rule holds for free energies of transfer and that enthalpy and entropy display convex curves. The present data are compared with those from the aqueous to the dodecyltrimethylammonium bromide (DTAB) micellar phases and to the literature data for transfer from water to octane. The role of the hydrophilic interactions between OH group and the micellar head groups and of the hydrophobic interactions between the methylene group and its apolar environment is evidenced.  相似文献   

6.
Fluorescence probe and nuclear magnetic resonance (NMR) methods were employed to investigate the micellation of prepared crown ether surfactants, e.g. decyl 15‐crown‐5 and decyl 18‐crown‐6. Pyrene was employed as the fluorescence probe to evaluate the critical micellar concentration (CMC) of these surfactants in aqueous solutions while spin lattice relaxation times (T1) and chemical shifts of H‐1 NMR were applied in non‐aqueous solutions. Decyl 15‐crown‐5 with lower CMC forms micelles much easier than decyl 18‐crown‐6 with higher CMC in aqueous solutions, whereas decyl 18‐crown‐6 forms micelles easier than decyl 15‐crown‐5 in nonaqueous solutions. Comparison of the CMC of crown ether surfactants and other polyoxyethylene surfactants such as decylhexaethylene glycol was made. Effects of salts and solvents on the micellar formation were also investigated. In general, additions of both alkali metal salts and polar organic solvents into the aqueous surfactant solutions increased in the CMC of these surfactants. The formation of micelles in organic solvents such as methanol and acetonitrile was successfully observed by the NMR method while it was difficult to study these surfactants in organic solutions by the pyrene fluorescence probe method. The NMR study revealed that the formation of micelles resulted in the decrease in all H‐1 spin lattice relaxation times (T1) of hydrophobic groups, e.g. CH3 and CH2, and hydrophilic group OCH2 of these surfactants. However, upon the micellar formation, the H‐1 chemical shifts (δ) of these surfactant hydrophobic groups were found to shift to downfield (increased δ) while the chemical shift of the hydrophilic group OCH2 moved to up‐field. Comparison of the spin lattice relaxation time and H‐1 chemical shift methods was also made and discussed.  相似文献   

7.
Many studies support the idea that alcohols in water undergo microphase transitions which are, in many respects, similar to micellization. To investigate the interactions in these systems even further, the volumes of transfer of normal alcohols of intermediate chain length, kept near infinite dilution, were measured from water to aqueous solutions of 2-propanol and 2-butoxyethanol. These results were compared with the volumes of transfer of the same alcohols to aqueous solutions of octyldimethylamine oxide, a well-characterized non-ionic surfactant. The trends observed are all very similar, exhibiting in many cases a maximum in the transition region. This tends to confirm the formation of mixed aggregates in aqueous mixtures of alcohols, but, in a general way, it is also shown that the magnitude of an extremum in the functions of transfer is related to the relative hydrophobicities of the present solutes, the extremum appearing in most cases only when the transferred solute is more hydrophobic than the main solute.  相似文献   

8.
The exces enthalpies of solution of some primary and secondary alcohols in aqueous sodium dodecylsulfate micellar solutions were measured and the results were explained by considering the distribution of alcohols between aqueous and micellar phases. The distribution constant and the enthalpy of transfer (and the standard free energy and entropy of transfer) were obtained. The thermodynamic parameters for the transfer of secondary alcohols from the aqueous to the sodium dodecylsulfate (NaDS) micellar phase differ slightly from those of the corresponding primary alcohols. For both series of alcohols the additivity rule holds for free energies of transfer whereas enthalpies and entropies display convex curves. The present data are compared to those for the transfer of the same solutes from the aqueous to the dodecyldimethylamine oxide (DDAO) and dodecyltrimethylammonium bromide (DTAB) micellar phases. The role of the hydrophilic interactions between the OH group and the micelles' head groups is formulated. The thermodynamics of the branched methyl group were determined. Furthermore, the thermodynamics of solvation of primary alcohols in water, in NaDS micelles, and in octane have been calculated using reference states based on the assumption that the empty space around alcohols in the initial and final states is the same. It is shown that the solvation of alcohols in NaDS micellar phase is enthalpy driven and that the thermodynamic properties of solvation vs. the length of the alcohol tail is the same for water and NaDS micelles whereas it is different for octane. A possible explanation for this difference is that the alkyl chain of alcohols folds in octane.  相似文献   

9.
Micellar and thermodynamic properties of anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecyl sulfonate (SDSn) in aqueous solutions of 5 wt% short-chain alcohols methanol, ethanol, and 1-butanol were investigated by experimental electrical conductivities, densities and sound velocities at 298.15 K. It was found that methanol behaves like a cosolvent and increases the critical micelle concentration (CMC) of both surfactants in aqueous solutions. However, the other investigated alkanols act as a cosurfactant and decrease the CMC by their presence. The values of the degree of counterion association on the micelles of both surfactants in aqueous methanol solution are same as those in pure water, and they decrease with increasing the alkyl chain length of alcohol. Furthermore, the values of the apparent molar volume and isentropic compressibility of the monomeric and micellar forms of the investigated surfactants were obtained from the experimental density and sound velocity data. It was found that the values of the apparent molar properties of both micellar and monomeric forms of the studied surfactants increase by increasing the alkyl chain of the alcohols.  相似文献   

10.
The densities and volumetric heat capacities of urea and alcohols were measured in aqueous solutions of octylammonium bromide (OABr) and of OABr in aqueous urea and alcohol solutions. The alcohols studies were methanol, ethanol, 1-propanol, 2-propanol, n-butanol, t-butanol, n-pentanol, n-hexanol and 2-butoxyethanol (BE). In most experiments, the concentration of the reference solute was kept low, and volumes and heat capacities of transfer from water to the mixed solvent were calculated. A more complete study was made with the system BE-OABr-H2O where both solutes were systematically changed. The observed trends in the thermodynamic functions can be explained through three effects: interactions between the reference solute and the cosolvent in the premiceller region of the surfactant or pre-aggregation region of the alcohol, a distribution of the reference solute between water and the micelle or microphase and an equilibrium displacement of the system, monomer-aggregate, in the vicinity of the reference solute.  相似文献   

11.
In this work the physicochemical behavior of a series of phytosterol ethoxylates in water is presented. The influence of the length of the polyoxyethylene chain is studied. The surfactant solutions have been examined by means of birefringent microscopy, surface tension, self-diffusion 1H NMR, dynamic and static light scattering, and rheology. The surfactants with a hydrophilic chain of 10 oxyethylene units or more gave a micellar region. The CMC values were generally very low and a reverse relationship between the CMC value and the polyoxyethylene chain length was obtained. The time required to reach equilibrium surface tension was very long, more than 150 min. For the hydrophobic surfactants large lamellar regions appeared while for the more hydrophilic surfactants cubic and hexagonal structures were present which remained stable up to temperatures of 100 degrees C. In the micellar region prolate aggregates were formed which showed "ghostlike" behavior, consisting of cross-linked micelles with very fast relaxation times. Copyright 1999 Academic Press.  相似文献   

12.
The migration behavior of cationic solutes and influences of the interactions of cationic solutes with sodium dodecyl sulfate (SDS) on the formation of micelles and its critical micelle concentration (CMC) were investigated by capillary electrophoresis at neutral pH. Catecholamines and structurally related compounds, including epinephrine, norepinephrine, dopamine, norephedrine, and tyramine, which involve different extents of hydrophobic, ionic and hydrogen-bonding interactions with SDS surfactant, are selected as cationic solutes. The dependence of the effective electrophoretic mobility of cationic solutes on the concentration of surfactant monomers in the premicellar region provides direct evidence of the formation of ion-pairs between cationic solutes and anionic dodecyl sulfate monomers. Three different approaches, based on the variations of either the effective electrophoretic mobility or the retention factor as a function of surfactant concentration in the premicellar and micellar regions, and the linear relationship between the retention factor and the product of a distribution coefficient and the phase ratio, were considered to determine the CMC value of SDS micelles. The suitability of the methods used for the determination of the CMC of SDS with these cationic solutes was discussed. Depending on the structures of cationic solutes and electrophoretic conditions, the CMC value of SDS determined varies in a wide concentration range. The results indicate that, in addition to hydrophobic interaction, both ionic and hydrogen-bonding interactions have pronounced effects on the formation of SDS micelles. Ionic interaction between cationic solutes and SDS surfactant stabilizes the SDS micelles, whereas hydrogen-bonding interactions weakens the solubilization of the attractive ionic interaction. The elevation of the CMC of SDS depends heavily on hydrogen-bonding interactions between cationic solutes and SDS surfactant. Thus, the CMC value of SDS is remarkably elevated with catecholamines, such as epinephrine and norepinephrine, as compared with norephedrine. In addition, the effect of methanol content in the sample solution of these cationic solutes on the CMC of SDS was also examined.  相似文献   

13.
At low pH conditions and in the presence of anionic, cationic, and nonionic surfactants, hydrophobically modified alkali-soluble emulsions (HASE) exhibit pronounced interaction that results in the solubilization of the latex. The interaction between HASE latex and surfactant was studied using various techniques, such as light transmittance, isothermal titration calorimetry, laser light scattering, and electrophoresis. For anionic surfactant, noncooperative hydrophobic binding dominates the interaction at concentrations lower than the critical aggregation concentration (CAC) (C < CAC). However, cooperative hydrophobic binding controls the formation of mixed micelles at high surfactant concentrations (C > or = CAC), where the cloudy solution becomes clear. For cross-linked HASE latex, anionic surfactant binds only noncooperatively to the latex and causes it to swell. For cationic surfactant, electrostatic interaction occurs at very low surfactant concentrations, resulting in phase separation. With further increase in surfactant concentration, noncooperative hydrophobic and cooperative hydrophobic interactions dominate the binding at low and high surfactant concentrations, respectively. For anionic and cationic surfactant systems, the CAC is lower than the critical micelle concentration (CMC) of surfactants in water. In addition, counterion condensation plays an important role during the binding interaction between HASE latex and ionic surfactants. In the case of nonionic surfactants, free surfactant micelles are formed in solution due to their relatively low CMC values, and HASE latexes are directly solubilized into the micellar core of nonionic surfactants.  相似文献   

14.
The semi-equilibrium dialysis method has been used to infer solubilization equilibrium constants or, alternatively, activity coefficients of solutes solubilized into micelles of aqueous surfactant solutions. Methods are described for inferring the concentrationa of monomers of the organic solute and of the surfactant on both sides of the dialysis membrane, under conditions where the organic solute is in equilibrium with both the high-concentration (retentate) and low-concentration (permeate) solutions. By using a form of the Gibbs-Duhem equation, activity coefficients of both phenol (the solubilizate) and n-hexadecylpyridinium chloride (the surfactant) are obtained for aqueous solutions at 25°C throughout a wide range of relative compositions of surfactant and solubilizate within the micelle. The apparent solubilization constant, K=[solubilized phenol]/([monomeric phenol][micellar surfactant]), is found to decrease significantly as the mole fraction of phenol in the micelle increases.  相似文献   

15.
Solubilization of water and aqueous NaCl solutions in mixed reverse micellar systems of anionic surfactant AOT and nonionic surfactants in n-heptane was studied. It was found that the maximum solubilization capacity of water was higher in the presence of certain concentrations of NaCl electrolyte, and these concentrations increased with the increase of nonionic surfactant content and their EO chain length. Soluibilization capacity was enhanced by mixing AOT with nonionic surfactants. The observed phenomena were interpreted in terms of the stability of the interfacial film of reverse micellar microdroplet and the packing parameter of the surfactant that formed mixed reverse micelles.  相似文献   

16.
The spontaneous hydrolysis of phenyl chloroformate was studied in various anionic, nonionic, zwitterionic, and cationic aqueous micellar solutions, as well as in mixed anionic–nonionic micellar solutions. In all cases, an increase in the surfactant concentration results in a decrease in the reaction rate and micellar effects were quantitatively explained in terms of distribution of the substrate between water and micelles and the first‐order rate constants in the aqueous and micellar pseudophases. A comparison of the kinetic data in nonionic micellar solutions to those in anionic and zwiterionic micellar solutions makes clear that charge effects of micelles is not the only factor responsible for the variations in the reaction rate. Depletion of water in the interfacial region and its different characteristics as compared to bulk water, the presence of high ionic concentration in the Stern layer of ionic micelles, and differences in the stabilization of the initial state and the transition state by hydrophobic interactions with surfactant tails can also influence reactivity. The different deceleration of the reaction observed in the various micellar solutions studied was discussed by considering these factors. Synergism in mixed‐micellar solutions is shown through the kinetic data obtained in these media. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 445–451, 2002  相似文献   

17.
M Ju  Z El Rassi 《Electrophoresis》1999,20(13):2766-2771
Chiral cyclohexyl-pentyl-beta-D-maltoside (CYMAL-5) surfactant was evaluated in the enantioseparation of charged racemic species by capillary electrophoresis. CYMAL-5 is a glycosidic surfactant (GS) with a chiral maltose polar head group and a cyclohexyl-pentyl hydrophobic tail. At concentrations above its critical micellar concentration (CMC), CYMAL-5 produces neutral micelles in aqueous media. The neutral micelles migrate at the velocity of the electroosmotic flow (EOF). As expected, the CYMAL-5 system was only useful for the enantioseparation of charged chiral solutes. The enantioresolution of the CYMAL-5 can be manipulated over a wide range of electrolyte composition, e.g., pH, ionic strength and surfactant concentration. In the presence of EOF, and in all cases, there is an optimum surfactant concentration for maximum enantioresolution, which is located at low surfactant concentration for strongly hydrophobic solutes and at high surfactant concentration for relatively hydrophilic solutes. The presence of an optimum surfactant concentration for maximum enantioresolution is attributed to the EOF. At low pH values where the EOF is negligible, enantioresolution increased with increasing surfactant concentration in the useful concentration range in a way similar to chromatography.  相似文献   

18.
Solubilization and interaction of azo-dye light yellow (X6G) at/with cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) was investigated spectrophotometricaly. The effect of cationic micelles on solubilization of anionic azo dye in aqueous micellar solutions of cationic surfactants was studied at pH 7 and 25 degrees C. The binding of dye to micelles implied a bathochromic shift in dye absorption spectra that indicates dye-surfactant interaction. The results showed that the solubility of dye increased with increasing surfactant concentration, as a consequence of the association between the dye and the micelles. The binding constants, K(b), were obtained from experimental absorption spectra. By using pseudo-phase model, the partition coefficients between the bulk water and surfactant micelles, K(x), were calculated. Gibbs energies of binding and distribution of dye between the bulk water and surfactant micelles were estimated. The results show favorable solubilization of dye in CTAB micelles.  相似文献   

19.
Sodium 10-undecenyl sulfate (SUS), sodium 10-undecenyl leucinate (SUL) and their five different mixed micelles at varied percent mole ratios were prepared. The critical micelle concentration (CMC), C20, γCMC, partial specific volume, methylene group selectivity, mobilities and elution window were determined using a variety of analytical techniques. These surfactant systems were then evaluated as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC). As a commonly used pseudostationary phase in MEKC, sodium dodecyl sulfate (SDS) was also evaluated. The CMC values of SUS and SUL were found to be 26 and 16 mM, respectively, whereas the CMC of mixed surfactants was found to be very similar to that of SUL. The C20 values decreased dramatically as the concentration of SUL is increased in the mixed micelle. An increase in SUL content gradually increased the methylene group selectivity making the binary mixed surfactants more hydrophobic. Linear solvation energy relationships (LSERs) and free energy of transfer studies were also applied to predict the selectivity differences between the surfactant systems. The cohesiveness and the hydrogen bond acidic character of the surfactant systems were found to have the most significant influence on selectivity and MEKC retention. The SUS and SDS showed the strongest while SUL showed the weakest hydrogen bond donating capacity. The basicity, interaction with n and π-electrons of the solute and dipolarity/polarizability were the least significant factors in LSER model for the surfactant systems studied. Free energies of transfer of selected functional groups in each surfactant systems were also calculated and found to be in good agreement with the LSER data.  相似文献   

20.
Two new surfactant molecules are reported that contain thermally labile Diels-Alder adducts connecting the hydrophilic and hydrophobic sections of each molecule. The two surfactants possess identical hydrophobic dodecyl tail segments but have phenol and carboxylic acid hydrophilic headgroups, respectively. Deprotonation with potassium hydroxide affords the formation of water-soluble surfactants. Room temperature aqueous solutions of both surfactants exhibit classical surface-active agent behavior similar to common analagous alkylaryl surfactant molecules. Critical micelle concentrations have been determined for each surfactant through dynamic surface tension and dye solubilization techniques. Small-angle neutron scattering measurements of the aqueous surfactant solutions indicate the presence of spherical micelles with radii of 16.5 angstroms for the carboxylate and 18.8 angstroms for the phenolate. When these surfactants are exposed to elevated temperatures (>50 degrees C), the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments. Aqueous solutions of each surfactant subsequently exhibit a loss of all surface-active behavior and the micellar aggregates are no longer detectable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号