首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
《Discrete Mathematics》2022,345(9):112942
A graph G is k-degenerate if every subgraph of G has a vertex with degree at most k. Using the Euler's formula, one can obtain that planar graphs without 3-cycles are 3-degenerate. Wang and Lih, and Fijav? et al. proved the analogue results for planar graphs without 5-cycles and planar graphs without 6-cycles, respectively. Recently, Liu et al. showed that planar graphs without 3-cycles adjacent to 5-cycles are 3-degenerate. In this work, we generalized all aforementioned results by showing that planar graphs without mutually adjacent 3-,5-, and 6-cycles are 3-degenerate. A graph G without mutually adjacent 3-,5-, and 6-cycles means that G cannot contain three graphs, say G1,G2, and G3, where G1 is a 3-cycle, G2 is a 5-cycle, and G3 is a 6-cycle such that each pair of G1,G2, and G3 are adjacent. As an immediate consequence, we have that every planar graph without mutually adjacent 3-,5-, and 6-cycles is DP-4-colorable. This consequence also generalizes the result by Chen et al that planar graphs without 5-cycles adjacent to 6-cycles are DP-4-colorable.  相似文献   

2.
A graph G is k-choosable if every vertex of G can be properly colored whenever every vertex has a list of at least k available colors. Grötzsch’s theorem [4] states that every planar triangle-free graph is 3-colorable. However, Voigt [M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math. 146 (1995) 325-328] gave an example of such a graph that is not 3-choosable, thus Grötzsch’s theorem does not generalize naturally to choosability. We prove that every planar triangle-free graph without 7- and 8-cycles is 3-choosable.  相似文献   

3.
A graph G=(V,E) is list L-colorable if for a given list assignment L={L(v):vV}, there exists a proper coloring c of G such that c(v)∈L(v) for all vV. If G is list L-colorable for every list assignment with |L(v)|?k for all vV, then G is said to be k-choosable.In this paper, we prove that (1) every planar graph either without 4- and 5-cycles, and without triangles at distance less than 4, or without 4-, 5- and 6-cycles, and without triangles at distance less than 3 is 3-choosable; (2) there exists a non-3-choosable planar graph without 4-cycles, 5-cycles, and intersecting triangles. These results have some consequences on the Bordeaux 3-color conjecture by Borodin and Raspaud [A sufficient condition for planar graphs to be 3-colorable. J. Combin. Theory Ser. B 88 (2003) 17-27].  相似文献   

4.
Some structural properties of planar graphs without 4-cycles are investigated. By the structural properties, it is proved that every planar graph G without 4-cycles is edge-(Δ(G)+1)-choosable, which perfects the result given by Zhang and Wu: If G is a planar graph without 4-cycles, then G is edge-t-choosable, where t=7 if Δ(G)=5, and otherwise t=Δ(G)+1.  相似文献   

5.
Edge choosability of planar graphs without short cycles   总被引:1,自引:0,他引:1  
In this paper we prove that if G is a planar graph with △= 5 and without 4-cycles or 6-cycles, then G is edge-6-choosable. This consequence together with known results show that, for each fixed k ∈{3,4,5,6}, a k-cycle-free planar graph G is edge-(△ 1)-choosable, where △ denotes the maximum degree of G.  相似文献   

6.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring ? of G such that ?(v)∈L(v) for all vV(G). If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper it is proved that every planar graph with neither 4-cycles nor chordal 6-cycles is acyclically 5-choosable. This generalizes the results of [M. Montassier, A. Raspaud, W. Wang, Acyclic 5-choosability of planar graphs without small cycles, J. Graph Theory 54 (2007) 245-260], and a corollary of [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (4) (2006) 281-300].  相似文献   

7.
A graph G is called (k, d)*-choosable if, for every list assignment L satisfying |L(v)| = k for all v ϵ V(G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. In this note, we prove that every planar graph without 4-cycles and l-cycles for some l ϵ {5, 6, 7} is (3, 1)*-choosable.  相似文献   

8.
9.
A proper vertex coloring of a graph G is acyclic if G contains no bicolored cycles.Given a list assignment L={L(v)|v∈V}of G,we say that G is acyclically L-colorable if there exists a proper acyclic coloringπof G such thatπ(v)∈L(v)for all v∈V.If G is acyclically L-colorable for any list assignment L with|L(v)|k for all v∈V(G),then G is acyclically k-choosable.In this paper,we prove that every planar graph G is acyclically 6-choosable if G does not contain 4-cycles adjacent to i-cycles for each i∈{3,4,5,6}.This improves the result by Wang and Chen(2009).  相似文献   

10.
It is known that planar graphs without cycles of length from 4 to 7 are 3-colorable (Borodin et al., 2005) [13] and that planar graphs in which no triangles have common edges with cycles of length from 4 to 9 are 3-colorable (Borodin et al., 2006) [11]. We give a common extension of these results by proving that every planar graph in which no triangles have common edges with k-cycles, where k∈{4,5,7} (or, which is equivalent, with cycles of length 3, 5 and 7), is 3-colorable.  相似文献   

11.
A total k-coloring of a graph G is a coloring of V(G) ∪ E(G) using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number χ'(G) is the smallest integer k such that G has a total k-coloring. It is known that if a planar graph G has maximum degree Δ≥ 9, then χ'(G) = Δ + 1. In this paper, we prove that if G is a planar graph with maximum degree 8 and without a fan of four adjacent 3-cycles, then χ'(G) = 9.  相似文献   

12.
Min Chen 《Discrete Mathematics》2008,308(24):6216-6225
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper we prove that every planar graph without 4-cycles and without two 3-cycles at distance less than 3 is acyclically 5-choosable. This improves a result in [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (2006) 281-300], which says that planar graphs of girth at least 5 are acyclically 5-choosable.  相似文献   

13.
On total chromatic number of planar graphs without 4-cycles   总被引:5,自引:0,他引:5  
Let G be a simple graph with maximum degree A(G) and total chromatic number Xve(G). Vizing conjectured thatΔ(G) 1≤Xve(G)≤Δ(G) 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs isΔ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then Xve(G)≤8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.  相似文献   

14.
A graph G is edge-L-colorable, if for a given edge assignment L={L(e):eE(G)}, there exists a proper edge-coloring ? of G such that ?(e)∈L(e) for all eE(G). If G is edge-L-colorable for every edge assignment L with |L(e)|≥k for eE(G), then G is said to be edge-k-choosable. In this paper, we prove that if G is a planar graph with maximum degree Δ(G)≠5 and without adjacent 3-cycles, or with maximum degree Δ(G)≠5,6 and without 7-cycles, then G is edge-(Δ(G)+1)-choosable.  相似文献   

15.
《Discrete Mathematics》2022,345(4):112790
DP-coloring of graphs as a generalization of list coloring was introduced by Dvo?ák and Postle (2018). In this paper, we show that every planar graph without intersecting 5-cycles is DP-4-colorable, which improves the result of Hu and Wu (2017), who proved that every planar graph without intersecting 5-cycles is 4-choosable, and the results of Kim and Ozeki (2018).  相似文献   

16.
We study fault tolerance of vertex k pancyclicity of the alternating group graph AGn. A graph G is vertex k pancyclic, if for every vertex pG, there is a cycle going through p of every length from k to |G|. Xue and Liu [Z.-J. Xue, S.-Y. Liu, An optimal result on fault-tolerant cycle-embedding in alternating group graphs, Inform. Proc. Lett. 109 (2009) 1197-1201] put the conjecture that AGn is (2n-7)-fault-tolerant vertex pancyclic, which means that if the number of faults |F|?2n-7, then AGn-F is still vertex pancyclic. Chang and Yang [J.-M. Chang, J.-S. Yang, Fault-tolerant cycle-embedding in alternating group graphs, Appl. Math. Comput. 197 (2008) 760-767] showed that for the shortest cycles the fault-tolerance of AGn is much lower. They noted that with n-2 faults one can cut all 3-cycles going through a given vertex p (it is easy to observe that the same set of faults cuts all 4- and 5-cycles going through p). On the other hand they show that AGn is n-3-fault tolerant vertex 3 pancyclic. In this paper we show that the cycles of length ?6 are much more fault-tolerant. More precisely, we show that AGn is (2n-6)-fault-tolerant vertex 6 pancyclic. This bound is optimal, because every vertex p has 2n-4 neighbors.  相似文献   

17.
A graph G is called k-degenerate if every subgraph of G has a vertex of degree at most k. A k-degenerate graph G is maximal k-degenerate if for every edge e ? E(G), G + e is not k-degenerate. Necessary and sufficient conditions for the sequence II = (d1, d2, ?, dp) to be a degree sequence of a maximal k-degenerate graph G are presented. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
A graph G is equitably k-choosable if for any k-uniform list assignment L, there exists an L-colorable of G such that each color appears on at most vertices. Kostochka, Pelsmajer and West introduced this notion and conjectured that G is equitably k-choosable for k>Δ(G). We prove this for planar graphs with Δ(G)≥6 and no 4- or 6-cycles.  相似文献   

19.
In this paper, we investigate the signed graph version of Erdös problem: Is there a constant c such that every signed planar graph without k-cycles, where 4kc, is 3-colorable and prove that each signed planar graph without cycles of length from 4 to 8 is 3-colorable.  相似文献   

20.
Let G be a plane graph having no 5-cycles with a chord. If either Δ≥6, or Δ=5 and G contains no 4-cycles with a chord or no 6-cycles with a chord, then G is edge-(Δ+1)-choosable, where Δ denotes the maximum degree of G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号