首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. Given a list assignment L={L(v)∣vV} of G, we say G is acyclically L-list colorable if there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper we prove that planar graphs without 4, 7, and 8-cycles are acyclically 4-choosable.  相似文献   

2.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring ? of G such that ?(v)∈L(v) for all vV(G). If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper it is proved that every planar graph with neither 4-cycles nor chordal 6-cycles is acyclically 5-choosable. This generalizes the results of [M. Montassier, A. Raspaud, W. Wang, Acyclic 5-choosability of planar graphs without small cycles, J. Graph Theory 54 (2007) 245-260], and a corollary of [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (4) (2006) 281-300].  相似文献   

3.
An acyclic coloring of a graph G is a coloring of its vertices such that: (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex vV(G) a list L(v) of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an acyclic coloring ? of G such that ?(v)∈L(v) for all vV(G). If G is acyclically L-list colorable for any list assignment L with |L(v)|≥k for all vV(G), then G is said to be acyclically k-choosable. Borodin et al. proved that every planar graph with girth at least 7 is acyclically 3-choosable (Borodin et al., submitted for publication [4]). More recently, Borodin and Ivanova showed that every planar graph without cycles of length 4 to 11 is acyclically 3-choosable (Borodin and Ivanova, submitted for publication [7]). In this note, we connect these two results by a sequence of intermediate sufficient conditions that involve the minimum distance between 3-cycles: we prove that every planar graph with neither cycles of lengths 4 to 7 (resp. to 8, to 9, to 10) nor triangles at distance less than 7 (resp. 5, 3, 2) is acyclically 3-choosable.  相似文献   

4.
A proper coloring of a graphG is acyclic if G contains no 2-colored cycle.A graph G is acyclically L-list colorable if for a given list assignment L={L(v):v∈V(G)},there exists a proper acyclic coloringφof G such thatφ(v)∈L(v)for all v∈V(G).If G is acyclically L-list colorable for any list assignment L with|L(v)|≥k for all v∈V(G),then G is acyclically k-choosable.In this article,we prove that every toroidal graph is acyclically 8-choosable.  相似文献   

5.
Linear choosability of graphs   总被引:1,自引:0,他引:1  
A proper vertex coloring of a non-oriented graph G is linear if the graph induced by the vertices of any two color classes is a forest of paths. A graph G is linearly L-list colorable if for a given list assignment L={L(v):vV(G)}, there exists a linear coloring c of G such that c(v)∈L(v) for all vV(G). If G is linearly L-list colorable for any list assignment with |L(v)|?k for all vV(G), then G is said to be linearly k-choosable. In this paper, we investigate the linear choosability for some families of graphs: graphs with small maximum degree, with given maximum average degree, outerplanar and planar graphs. Moreover, we prove that deciding whether a bipartite subcubic planar graph is linearly 3-colorable is an NP-complete problem.  相似文献   

6.
A proper vertex coloring of a graph G is acyclic if G contains no bicolored cycles.Given a list assignment L={L(v)|v∈V}of G,we say that G is acyclically L-colorable if there exists a proper acyclic coloringπof G such thatπ(v)∈L(v)for all v∈V.If G is acyclically L-colorable for any list assignment L with|L(v)|k for all v∈V(G),then G is acyclically k-choosable.In this paper,we prove that every planar graph G is acyclically 6-choosable if G does not contain 4-cycles adjacent to i-cycles for each i∈{3,4,5,6}.This improves the result by Wang and Chen(2009).  相似文献   

7.
A graph G=(V,E) is list L-colorable if for a given list assignment L={L(v):vV}, there exists a proper coloring c of G such that c(v)∈L(v) for all vV. If G is list L-colorable for every list assignment with |L(v)|?k for all vV, then G is said to be k-choosable.In this paper, we prove that (1) every planar graph either without 4- and 5-cycles, and without triangles at distance less than 4, or without 4-, 5- and 6-cycles, and without triangles at distance less than 3 is 3-choosable; (2) there exists a non-3-choosable planar graph without 4-cycles, 5-cycles, and intersecting triangles. These results have some consequences on the Bordeaux 3-color conjecture by Borodin and Raspaud [A sufficient condition for planar graphs to be 3-colorable. J. Combin. Theory Ser. B 88 (2003) 17-27].  相似文献   

8.
A proper vertex coloring of a graph G=(V, E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L‐list colorable if for a given list assignment L={L(v)|vV}, there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k‐choosable. In this paper we prove that every planar graph G without 4‐cycles is acyclically 6‐choosable. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 307–323, 2009  相似文献   

9.
A proper vertex coloring of a graph G = (V, E) is acyclic if G contains no bicolored cycle. Given a list assignment L = {L(v)|vV} of G, we say G is acyclically L‐list colorable if there exists a proper acyclic coloring π of G such that π(v)∈L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k‐choosable. In this article we prove that every planar graph without 4‐cycles and without intersecting triangles is acyclically 5‐choosable. This improves the result in [M. Chen and W. Wang, Discrete Math 308 (2008), 6216–6225], which says that every planar graph without 4‐cycles and without two triangles at distance less than 3 is acyclically 5‐choosable. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

10.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L‐list colorable if for a given list assignment L = {L(v): v: ∈ V}, there exists a proper acyclic coloring ? of G such that ?(v) ∈ L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L (v)|≥ k for all vV, then G is acyclically k‐choosable. In this article, we prove that every planar graph G without 4‐ and 5‐cycles, or without 4‐ and 6‐cycles is acyclically 5‐choosable. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 245–260, 2007  相似文献   

11.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is L‐list colorable if for a given list assignment L = {L(v): vV}, there exists a proper coloring c of G such that c (v) ∈ L(v) for all vV. If G is L‐list colorable for every list assignment with |L (v)| ≥ k for all vV, then G is said k‐choosable. A graph is said to be acyclically k‐choosable if the obtained coloring is acyclic. In this paper, we study the links between acyclic k‐choosability of G and Mad(G) defined as the maximum average degree of the subgraphs of G and give some observations about the relationship between acyclic coloring, choosability, and acyclic choosability. © 2005 Wiley Periodicals, Inc. J Graph Theory 51: 281–300, 2006  相似文献   

12.
A list-assignment L to the vertices of G is an assignment of a set L(v) of colors to vertex v for every vV(G). An (L,d)-coloring is a mapping ? that assigns a color ?(v)∈L(v) to each vertex vV(G) such that at most d neighbors of v receive color ?(v). A graph is called (k,d)-choosable, if G admits an (L,d)-coloring for every list assignment L with |L(v)|≥k for all vV(G). In this note, it is proved that every plane graph, which contains no 4-cycles and l-cycles for some l∈{8,9}, is (3,1)-choosable.  相似文献   

13.
An L-list coloring of a graph G is a proper vertex coloring in which every vertex v gets a color from a list L(v) of allowed colors. G is called k-choosable if all lists L(v) have exactly k elements and if G is L-list colorable for all possible assignments of such lists. Verifying conjectures of Erdos, Rubin and Taylor it was shown during the last years that every planar graph is 5-choosable and that there are planar graphs which are not 4-choosable. The question whether there are 3-colorable planar graphs which are not 4-choosable remained unsolved. The smallest known example far a non-4-choosable planar graph has 75 vertices and is described by Gutner. In fact, this graph is also 3 colorable and answers the above question. In addition, we give a list assignment for this graph using 5 colors only in all of the lists together such that the graph is not List-colorable. © 1997 John Wiley & Sons, Inc.  相似文献   

14.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

15.
A graph G is edge-L-colorable, if for a given edge assignment L={L(e):eE(G)}, there exists a proper edge-coloring ? of G such that ?(e)∈L(e) for all eE(G). If G is edge-L-colorable for every edge assignment L with |L(e)|≥k for eE(G), then G is said to be edge-k-choosable. In this paper, we prove that if G is a planar graph with maximum degree Δ(G)≠5 and without adjacent 3-cycles, or with maximum degree Δ(G)≠5,6 and without 7-cycles, then G is edge-(Δ(G)+1)-choosable.  相似文献   

16.
A graph G is called (k, d)*-choosable if, for every list assignment L satisfying |L(v)| = k for all v ϵ V(G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. In this note, we prove that every planar graph without 4-cycles and l-cycles for some l ϵ {5, 6, 7} is (3, 1)*-choosable.  相似文献   

17.
In this paper we discuss some basic properties of k-list critical graphs. A graph G is k-list critical if there exists a list assignment L for G with |L(v)|=k−1 for all vertices v of G such that every proper subgraph of G is L-colorable, but G itself is not L-colorable. This generalizes the usual definition of a k-chromatic critical graph, where L(v)={1,…,k−1} for all vertices v of G. While the investigation of k-critical graphs is a well established part of coloring theory, not much is known about k-list critical graphs. Several unexpected phenomena occur, for instance a k-list critical graph may contain another one as a proper induced subgraph, with the same value of k. We also show that, for all 2≤pk, there is a minimal k-list critical graph with chromatic number p. Furthermore, we discuss the question, for which values of k and n is the complete graph Knk-list critical. While this is the case for all 5≤kn, Kn is not 4-list critical if n is large.  相似文献   

18.
A graph G is equitably k-choosable if for any k-uniform list assignment L, there exists an L-colorable of G such that each color appears on at most vertices. Kostochka, Pelsmajer and West introduced this notion and conjectured that G is equitably k-choosable for k>Δ(G). We prove this for planar graphs with Δ(G)≥6 and no 4- or 6-cycles.  相似文献   

19.
R.G. Gibson 《Discrete Mathematics》2008,308(24):5937-5943
For any permutation π of the vertex set of a graph G, the graph πG is obtained from two copies G and G of G by joining uV(G) and vV(G) if and only if v=π(u). Denote the domination number of G by γ(G). For all permutations π of V(G), γ(G)≤γ(πG)≤2γ(G). If γ(πG)=γ(G) for all π, then G is called a universal fixer. We prove that graphs without 5-cycles are not universal fixers, from which it follows that bipartite graphs are not universal fixers.  相似文献   

20.
A graph G is called (k,d)?-choosable if for every list assignment L satisfying ∣L(v)∣ ≥k for all vV(G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. In this paper, it is proved that every graph of nonnegative characteristic without intersecting i-cycles for all i=3,4,5 is (3,1)?-choosable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号