首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Volvariella volvacea strains were studied in relation with their ability to produce biomass, lipids and polysaccharides. Firstly, screening of four strains (AMLR 188, 190, 191 and 192) was performed in agar cultures, where the mycelial growth rate of the strains was measured, and in static liquid cultures, where the production of biomass, the biosynthesis of total cellular lipids and the consumption of glucose were monitored. For all strains, biomass production was significant (13?C15?g?l?1) and total lipid in dry weight (%, w/w) ranged from 3 to 12?%. Afterwards, a detailed kinetic analysis of mycelial biomass, extra- and intra- cellular polysaccharides (EPS, IPS, respectively) as well as lipid production by a V. volvacea selected strain was conducted in submerged static and agitated cultures. Maximum values of 15?g?l?1 biomass, ??1.0?g?l?1 EPS and 5.5?g?l?1 IPS were recorded. Agitation did not have severe impact on biomass, EPS and IPS production, but it increased total lipid in dry weight quantities. EPS, IPS and lipid in dry weight values decreased with time. Glucose was the major cellular carbohydrate detected. Total fatty acid analysis of cellular lipids was performed for all V. volvacea strains and linoleic acid ??9,12C18:2 was predominant. Neutral lipids constituted the major fraction of cellular lipids, but their quantity decreased as fermentation proceeded. Phospholipids were the most saturated lipid fraction.  相似文献   

2.
The effect of four synthetic media containing glucose (initial concentration 30?g?l?1) on mycelial growth, exopolysaccharides (EPS) and cellular lipids production was examined in 11 mushroom species after 12 and 16?days of culture in static- and shake-flasks. Fatty acid analysis of cellular lipids produced was also performed. Agitation had a positive effect on biomass production, glucose consumption and lipid biosynthesis. Media that favoured the production of biomass were not suitable for EPS biosynthesis and vice versa. Biomass values varied from ??1.0?g?l?1 (Lentinula edodes) to ??19?g?l?1 (Pleurotus ostreatus), while the highest EPS quantity achieved ranged between 1.6 and 1.8?g?l?1 (for Ganoderma lucidum and L. edodes, respectively). Quantities of total cellular lipids varied between 2.5 and 18.5?% w/w, in dry mycelial mass for the fungi tested. Lipid in dry weight values were influenced by the medium composition. Cellular lipids presented noticeable quantities of poly-unsaturated fatty acids like linoleic acid. Compared to most of the mushrooms tested, lipids of Volvariella volvacea were more saturated. The ability of several mushroom species of our study to produce in notable quantities the above-mentioned added-value compounds renders these fungi worthy for further investigations.  相似文献   

3.
Cofermentation of xylose and arabinose, in addition to glucose, is critical for complete bioconversion of lignocellulosic biomass, such as agricultural residues and herbaceous energy crops, to ethanol. A factorial design experiment was used to evaluate the cofermentation of glucose, xylose, and arabinose with mixed cultures of two genetically engineeredZymomonas mobilis strains (one ferments xylose and the other arabinose). The pH range studied was 5.0-6.0, and the temperature range was 30-37°C The individual sugar concentrations used were 30 g/L glucose, 30 g/L xylose, and 20 g/L arabinose. The optimal cofermentation conditions obtained by data analysis, using Design Expert software, were pH 5.85 and temperature 31.5°C. The cofermentation process yield at optimal conditions was 72.5% of theoritical maximum. The results showed that neither the arabinose strain nor arabinose affected the performance of the xylose strain; however, both xylose strain and xylose had a significant effect on the performance of the arabinose strain. Although cofermentation of all three sugars is achieved by the mixed cultures, there is a preferential order of sugar utilization. Glucose is used rapidly, then xylose, followed by arabinose.  相似文献   

4.
In this study, carbohydrates (cellulose plus hemicellulose) in corncob were effectively converted furfuralcohol (FOL) via chemical–enzymatic catalysis in a one-pot manner. After corncob (2.5 g, dry weight) was pretreated with 0.5 wt% oxalic acid, the obtained corncob-derived xylose (19.8 g/L xylose) could be converted to furfural at 60.1% yield with solid acid catalyst SO4 2?/SnO2-attapulgite (3.6 wt% catalyst loading) in the water–toluene (3:1, v/v) at 170 °C for 20 min. Moreover, the oxalic acid-pretreated corncob residue (1.152 g, dry weight) was enzymatically hydrolyzed to 0.902 g glucose and 0.202 g arabinose. Using the corncob-derived glucose (1.0 mM glucose/mM furfural) as cosubstrate, the furfural liquor (48.3 mM furfural) was successfully biotransformed to FOL by recombinant Escherichia coli CCZU-A13 cells harboring an NADH-dependent reductase (SsCR) in the water-toluene (4:1, v/v) under the optimum conditions (50 mM PEG-6000, 0.2 mM Zn2+, 0.1 g wet cells/mL, 30 °C, pH 6.5). After the bioreduction for 2 h, FAL was completely converted to FOL. The FOL yield was obtained at 0.11 g FOL/g corncob. Clearly, this one-pot synthesis strategy shows high potential application for the effective synthesis of FOL.  相似文献   

5.
Oxidative lime pretreatment of high-lignin biomass   总被引:1,自引:0,他引:1  
Lime (Ca[OH]2) and oxygen (O2) were used to enhance the enzymatic digestibility of two kinds of high-lignin biomass: poplar wood and newspaper. The recommended pretreatment conditions for poplar wood are 150°C, 6 h, 0.1 g of Ca(OH)2/g of dry biomass, 9 mL of water/g of dry biomass, 14.0 bar absolute oxygen, and a particle size of −10 mesh. Under these conditions, the 3-d reducing sugar yield of poplar wood using a cellulase loading of 5 filter paper units (FPU)/g of raw dry biomass increased from 62 to 565 mg of eq. glucose/g of raw dry biomass, and the 3-d total sugar (glucose + xylose) conversion increased from 6 to 77% of raw total sugars. At high cellulase loadings (e.g., 75 FPU/g of raw dry biomass), the 3-d total sugar conversion reached 97%. In a trial run with newspaper, using conditions of 140°C, 3 h, 0.3 g of Ca(OH)2/g of dry biomass, 16 mL of water/g of dry biomass, and 7.1 bar absolute oxygen, the 3-d reducing sugar yield using a cellulase loading of 5 FPU/g of raw dry biomass increased from 240 to 565 mg of eq. glucose/g of raw dry biomass. A material balance study on poplar wood shows that oxidative lime pretreatment solubilized 38% of total biomass, including 78% of lignin and 49% of xylan; no glucan was removed. Ash increased because calcium was incorporated into biomass during the pretreatment. After oxidative lime pretreatment, about 21% of added lime could be recovered by CO2 carbonation.  相似文献   

6.
Glucose/xylose mixtures (90 g/L total sugar) were evaluated for their effect on ethanol fermentation by a recombinant flocculent Saccharomyces cerevisiae, MA-R4. Glucose was utilized faster than xylose at any ratio of glucose/xylose, although MA-R4 can simultaneously co-ferment both sugars. A high percentage of glucose can increase cell biomass production and therefore increase the rate of glucose utilization (1.224 g glucose/g biomass/h maximum) and ethanol formation (0.493 g ethanol/g biomass/h maximum). However, the best ratio of glucose/xylose for the highest xylose consumption rate (0.209 g xylose/g biomass/h) was 2:3. Ethanol concentration and yield increased and by-product (xylitol, glycerol, and acetic acid) concentration decreased as the proportion of glucose increased. The maximum ethanol concentration was 41.6 and 21.9 g/L after 72 h of fermentation with 90 g/L glucose and 90 g/L xylose, respectively, while the ethanol yield was 0.454 and 0.335 g/g in 90 g/L glucose and 90 g/L xylose media, respectively. High ethanol yield when a high percentage of glucose is available is likely due to decreased production of by-products, such as glycerol and acetic acid. These results suggest that ethanol selectivity is increased when a higher proportion of glucose is available and reduced when a higher proportion of xylose is available.  相似文献   

7.
The focus of this work was to develop a combined acid and alkaline hydrothermal pretreatment of lignocellulose that ensures high recovery of both hexose and pentose. Dilute sulfuric acid and lime pretreatments were employed sequentially. Process performance was optimized in terms of catalyst concentration, retention time, and temperature using response surface methodology. Medium operational conditions in the acid stage and harsh conditions in the alkaline stage were desirable with optimal performance at 0.73 wt% H2SO4, 150 °C, 6.1 min in the first stage, and 0.024 g lime/g biomass, 202 °C, 30 min in the second stage. In comparison to single-stage pretreatments with high recovery of either glucose or xylose, two-stage process showed great promises with >80 % glucose and >70 % xylose recovery. In addition, the method greatly improved ethanol fermentation with yields up to 0.145 g/g Miscanthus, due to significantly reduced formation of inhibitory by-products such as weak acids, furans, and phenols. Supplementing biomimetic acids would further increase glucose yield by up to 15 % and xylose yield by 25 %.  相似文献   

8.
The production of antimicrobial metabolites by Paenibacillus polymyxa RNC-D was assessed. Two process variables, glucose and inoculum concentrations, were evaluated at different levels (5?C40 g L?1, and at ?? r = 2.5?C5.0 %, respectively), and their effects on biomass formation, minimal inhibitory concentration (MIC) against Escherichia coli, and surface tension reduction (STR) were studied. When the fermentation process was carried out under non-optimised conditions, the biomass, MIC, and STR achieved the following values: 0.6 g L?1, 1 g L?1, and 18.4 mN m?1, respectively. The optimum glucose (16 g L?1) and inoculum volume ratio (?? r = 5.0 %) were defined in order to maximise the biomass formation, with a low value of MIC and high STR of extract. The experiments carried out under optimal conditions showed the following values for the dependent variables: biomass concentration 2.05 g L?1, MIC 31.2 ??g mL?1, and STR 10.7 mN m?1, which represented improvement of 241.7 %, 96.9 %, and 41.9 % for the responses of biomass, MIC, and STR, respectively. This is the first recorded study on the optimisation of culture conditions for the production of antimicrobial metabolites of P. polymyxa RNC-D, and constitutes an important step in the development of strategies to modulate the production of antimicrobial molecules by this microorganism at elevated levels.  相似文献   

9.
Food waste and municipal wastewater are promising feedstocks for microbial lipid biofuel production, and corresponding production process is to be developed. In this study, different oleaginous yeast strains were tested to grow in hydrolyzed food waste, and growths of Cryptococcus curvatus, Yarrowia lipolytica, and Rhodotorula glutinis in this condition were at same level as in glucose culture as control. These strains were further tested to grow in municipal primary wastewater. C. curvatus and R. glutinis had higher production than Y. lipolytica in media made from primary wastewater, both with and without glucose supplemented. Finally, a process was tested to grow C. curvatus and R. glutinis in media made from food waste and municipal wastewater, and the effluents from these processes were further treated with yeast culture and phototrophic algae culture; 1.1 g/L C. curvatus and 1.5 g/L R. glutinis biomass were further produced in second-step yeast cultures, as well as 1.53 and 0.58 g/L Chlorella sorokiniana biomass in phototrophic cultures. The residual nitrogen concentrations in final effluents were 33 mg/L and 34 mg/L, respectively, and the residual phosphorus concentrations were 1.5 and 0.6 mg/L, respectively. The lipid contents in the produced biomass were from 18.7% to 28.6%.  相似文献   

10.
The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose?Cxylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8?±?0.31?g L?1), ethanol productivity (1.06?g L?1 h?1) and ethanol yield (0.458?g g?1) by fermentation of glucose?Cxylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08?±?0.142?g L?1, ethanol yield of 0.44?g g?1, productivity of 0.45?g L?1?h?1 and biomass yield of 0.40?g g?1.  相似文献   

11.
The production of ultrahigh molecular weight poly-3-hydroxybutyric acid (P3HB) from carbohydrates by recombinant Escherichia coli harboring genes from Ralstonia eutropha was evaluated. In shaken-flask experiments, E. coli XL1 Blue harboring plasmid pSK::phaCAB produced P3HB corresponding to 40 and 27 % of cell dry weight from glucose and xylose, respectively. Cultures in bioreactor using glucose as the sole carbon source at variable pH values (6.0, 6.5, or 7.0) allowed the production of P3HB with molecular weight varying between 2.0 and 2.5 MDa. These figures are significantly higher than the values often obtained by natural bacterial strains (0.5–1.0 MDa). Contrary to reports of other authors, no influence of pH was observed on the molecular weight of the polymer produced. Using xylose, P3HB with high molecular weight was also produced, indicating the possibility to produce these polymers from lignocellulosic materials.  相似文献   

12.
Iogen Corporation of Ottawa, Canada, has recently built a 50 t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. Iogen has partnered with the University of Toronto to test the C6/C5 cofermentation performance characteristics of National Renewable Energy Laboratory's metabolically engineered Zymomonas mobilis using its biomass hydrolysates. In this study, the biomass feedstock was an agricultural waste, namely oat hulls, which was hydrolyzed in a proprietary two-stage process involving pretreatment with dilute sulfuric acid at 200–250°C, followed by cellulase hydrolysis. The oat hull hydrolysate (OHH) contained glucose, xylose, and arabinose in a mass ratio of about 8:3:0.5. Fermentation media, prepared from diluted hydrolysate, were nutritionally amended with 2.5 mL/L of corn steep liquor (50% solids) and 1.2 g/L of diammonium phosphate. The estimated cost for large-scale ethanol production using this minimal level of nutrient supplementation was 4.4c/gal of ethanol. This work examined the growth and fermentation performance of xyloseutilizing, tetracycline-resistant, plasmid-bearing, patented, recombinant Z. mobilis cultures: CP4:pZB5, ZM4:pZB5, 39676:pZB4L, and a hardwood prehydrolysate-adapted variant of 39676:pZB4L (designated asthe “adapted” strain). In pH-stat batch fermentations with unconditioned OHH containing 6% (w/v) glucose, 3% xylose, and 0.75% acetic acid, rec Zm ZM4:pZB5 gave the best performance with a fermentation time of 30h, followed by CP4:pZB5 at 48h, with corresponding volumetric productivities of 1.4 and 0.89 g/(L·h), respectively. Based on the available glucose and xylose, the process ethanol yield for both strains was 0.47 g/g (92% conversion efficiency). At 48 h, the process yield for rec Zm 39676:pZB4L and the adapted strain was 0.32 and 0.34 g/g, respectively. None of the test strains was able to fermentarabinose. Acetic acid tolerance appeared to be a major determining factor in cofermentation performance.  相似文献   

13.
Plant materials from the vegetative growth stage of reed canarygrass and the seed stage of reed canarygrass are pretreated by ammonia fiber expansion (AFEX) and enzymatically hydrolyzed using 15 filter paper units (FPU) cellulase/g glucan to evaluate glucose and xylose yields. Percent conversions of glucose and xylose, effects of temperature and ammonia loading, and hydrolysis profiles are analyzed to determine the most effective AFEX treatment condition for each of the selected materials. The controls used in this study were untreated samples of each biomass material. All pretreatment conditions tested enhanced enzyme digestibility and improved sugar conversions for reed canarygrass compared with their untreated counterparts. Based on 168 h hydrolysis results using 15 FPU Spezyme CP cellulase/g glucan the most effective AFEX treatment conditions were determined as: vegetative growth stage of reed canarygrass--100 degrees C, 60% moisture content, 1.2:1 kg ammonia/kg of dry matter (86% glucose and 78% xylose) and seed stage of reed canarygrass--100 degrees C, 60% moisture content, 0.8:1 kg ammonia/kg of dry matter (89% glucose and 81% xylose). Supplementation by commercial Multifect 720 xylanase along with cellulase further increased both glucose and xylose yields by 10-12% at the most effective AFEX conditions.  相似文献   

14.
15.
Biosorption of uranyl ions from aqueous solution by Saccharomyces cerevisiae was studied in a batch system. The influence of contact time, initial pH, temperature and initial concentration was investigated. The optimal conditions were found to be 3.5?h of contact time and pH?=?4.5. Temperature had no significant effect on adsorption. The uptake of uranyl ions was relatively fast and 85?% of the sorption was completed within 10?min. The experimental data were well fitted with Langmuir isotherm model and pseudo-second order kinetic model. According to this kinetic model, the sorption capacity and the rate constant were 0.455?mmol UO2 2+/g dry biomass and 1.89?g?mmol?1?min?1, respectively. The Langmuir isotherm indicated high affinity and capacity of the adsorbent for uranyl biosorption with the maximum loading of 0.477?mmol UO2 2+/g dry weight.  相似文献   

16.
As a part of a natural biological N-cycle, nitrification is one of the steps included in the conception of artificial ecosystems designed for extraterrestrial life support systems (LSS) such as Micro-Ecological Life Support System Alternative (MELiSSA) project, which is the LSS project of the European Space Agency. Nitrification in aerobic environments is carried out by two groups of bacteria in a two-step process. The ammonia-oxidizing bacteria (Nitrosomonas europaea) realize the oxidation of ammonia to nitrite, and the nitrite-oxidizing bacteria (Nitrobacter winogradskyi), the oxidation of nitrite to nitrate. In both cases, the bacteria achieve these oxidations to obtain an energy and reductant source for their growth and maintenance. Furthermore, both groups also use CO2 predominantly as their carbon source. They are typically found together in ecosystems, and consequently, nitrite accumulation is rare. Due to the necessity of modeling accurately conversion yields and transformation rates to achieve a complete modeling of MELiSSA, the present study focuses on the experimental determination of nitrogen to biomass conversion yields. Kinetic and mass balance studies for axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions are performed. The follow-up of these cultures is done using flow cytometry for assessing biomass concentrations and ionic chromatography for ammonium, nitrite, and nitrate concentrations. A linear correlation is observed between cell count and optical density (OD) measurement (within a 10?% accuracy) validating OD measurements for an on-line estimation of biomass quantity even at very low biomass concentrations. The conversion between cell count and biomass concentration has been determined: 7.1?×?1012 cells g dry matter (DM)?1 for Nitrobacter and 6.3?×?1012 cells g DM?1 for Nitrosomonas. Nitrogen substrates and products are assessed redundantly showing excellent agreement for mass balance purposes and conversion yields determination. Although the dominant phenomena are the oxidation of NH 4 + into nitrite (0.95?mol?mol N?1 for Nitrosomonas europaea within an accuracy of 3?%) and nitrite into nitrate (0.975?mol?mol N?1 for Nitrobacter winogradskyi within an accuracy of 2?%), the Nitrosomonas europaea conversion yield is estimated to be 0.42?g DM mol?N?1, and Nitrobacter winogradskyi conversion yield is estimated to be 0.27?g DM mol?N?1. The growth rates of both strains appear to be dominated by the oxygen transfer into the experimental setups.  相似文献   

17.
Degradation of Triclosan under Aerobic, Anoxic, and Anaerobic Conditions   总被引:1,自引:0,他引:1  
Triclosan (2, 4, 4??-trichloro-2??-hydroxyl diphenyl ether) is a broad-spectrum antimicrobial agent present in a number of house hold consumables. Aerobic and anaerobic enrichment cultures tolerating triclosan were developed and 77 bacterial strains tolerating triclosan at different levels were isolated from different inoculum sources. Biodegradation of triclosan under aerobic, anoxic (denitrifying and sulphate reducing conditions), and anaerobic conditions was studied in batch cultures with isolated pure strains and enrichment consortium developed. Under aerobic conditions, the isolated strains tolerated triclosan up to 1?g/L and degraded the compound in inorganic-mineral-broth and agar media. At 10?mg/L level triclosan, 95?±?1.2% was degraded in 5?days, producing phenol, catechol and 2, 4-dichlorophenol as the degradation products. The strains were able to metabolize triclosan and its degradation products in the presence of monooxygenase inhibitor 1-pentyne. Under anoxic/anaerobic conditions highest degradation (87%) was observed in methanogenic system with acetate as co-substrate and phenol, catechol, and 2, 4-dichlorophenol were among the products. Three of the isolated strains tolerating 1?g/L triclosan were identified as Pseudomonas sp. (BDC 1, 2, and 3).  相似文献   

18.
In scale-up, the potential of ethanol production by dilute sulfuric acid pretreatment using corncob was investigated. Pretreatments were performed at 170 °C with various acid concentrations ranging from 0% to 1.656% based on oven dry weight. Following pretreatment, pretreated biomass yield ranged from 59% to 67%. More than 90% of xylan was removed at 0.828% of sulfuric acid. At same pretreatment condition, the highest glucose yield obtained from pretreated biomass by enzymatic hydrolysis was about 76%, based on a glucan content of 37/100 g. In hydrolysate obtained by pretreatment, glucose concentration was low, while xylose concentration was significantly increased above 0.368% of sulfuric acid. At 1.656% of sulfuric acid, xylose and glucose concentration was highest. In subsequent, fermentation with hydrolysate, maximal ethanol yield was attained after 24 h with 0.368% of sulfuric acid. The fermentation efficiency of hydrolysate obtained by enzymatic hydrolysis reached a maximum of 75% at an acid charge of 0.368%.  相似文献   

19.
The production of ethanol and methane from corn stover (CS) was investigated in a biorefinery process. Initially, a novel soaking pretreatment (NaOH and aqueous-ammonia) for CS was developed to remove lignin, swell the biomass, and improve enzymatic digestibility. Based on the sugar yield during enzymatic hydrolysis, the optimal pretreatment conditions were 1?% NaOH?+?8?% NH4OH, 50°C, 48?h, with a solid-to-liquid ratio 1:10. The results demonstrated that soaking pretreatment removed 63.6?% lignin while reserving most of the carbohydrates. After enzymatic hydrolysis, the yields of glucose and xylose were 78.5?% and 69.3?%, respectively. The simultaneous saccharification and fermentation of pretreated CS using Pichia stipitis resulted in an ethanol concentration of 36.1?g/L, corresponding only to 63.3?% of the theoretical maximum. In order to simplify the process and reduce the capital cost, the liquid fraction of the pretreatment was used to re-soak new CS. For methane production, the re-soaked CS and the residues of SSF were anaerobically digested for 120?days. Fifteen grams CS were converted to 1.9?g of ethanol and 1337.3?mL of methane in the entire process.  相似文献   

20.
The influences of urea, yeast extract, and nitrate as the nitrogen source on heterotrophic growth of four strains of Chlorella protothecoides were investigated in 9-day feed-batch cultures. Biomass dry weight concentration (DWC) and lipid yield (LY) of the four strains in all media were compared. The highest LY in 9 days was 654 mg/L/day by UTEX 255 in 2.4 g/L KNO3 medium with a biomass DWC of 11.7 g/L and lipid content of 50.5%. Using green autotrophic seeds instead of yellow heterotrophic seeds improved the biomass DWC (13.1 vs. 11.7 g/L), LY (850 vs. 654 mg/L/day), and lipid to glucose consumption ratio (0.607 vs. 0.162). Moreover, 17.0 g/L DWC and 489 mg/L/day LY were obtained from the sequentially mixed-nitrogen medium, and the lipid to glucose consumption ratio was improved to 0.197 from 0.162 in 2.4 g/L nitrate medium and from 0.108 in 4.2 g/L yeast extract medium in the first batch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号