首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fracture toughness of ductile materials depends upon the ability of the material to resist the growth of microscale voids near a crack tip. Mechanics analyses of the elastic–plastic deformation state around such voids typically assume the surrounding material to be isotropic. However, the voids exist predominantly within a single grain of a polycrystalline material, so it is necessary to account for the anisotropic nature of the surrounding material. In the present work, anisotropic slip line theory is employed to derive the stress and deformation state around a cylindrical void in a single crystal oriented so that plane strain conditions are admitted from three effective in-plane slip systems. The deformation state takes the form of angular sectors around the circumference of the void. Only one of the three effective slip systems is active within each sector. Each slip sector is further subdivided into smaller sectors inside of which it is possible to derive the stress state. Thus the theory predicts a highly heterogeneous stress and deformation state. In addition, it is shown that the in-plane pressure necessary to activate plastic deformation around a cylindrical void in an anisotropic material is significantly higher than that necessary for an isotropic material. Experiments and single crystal plasticity finite element simulations of cylindrical voids in single crystals, both of which exhibit a close correspondence to the analytical theory, are discussed in a companion paper.  相似文献   

2.
The analytical solution is derived for the plane strain stress field around a cylindrical void in a hexagonal close-packed single crystal with three in-plane slip systems oriented at the angle π/3 with respect to one another. The critical resolved shear stress on each slip system is assumed to be equal. The crystal is loaded by both internal pressure and a far-field equibiaxial compressive stress. The deformation field takes the form of angular sectors, called slip sectors, within which only one slip system is active; the boundaries between different sectors are radial lines. The stress fields are derived by enforcing equilibrium and a rigid, ideally plastic constitutive relationship, in the spirit of anisotropic slip line theory. The results show that each slip sector is divided into smaller regions denoted as stress sectors and the stress state valid within each stress sector is derived. It is shown that stresses are unique and are continuous within stress sectors and across stress sector boundaries, but the gradient of stresses is not continuous across the boundaries between stress sectors. The solution shows self-similarity in that the stresses over the entire domain can be determined from the stresses within a small region adjacent to the void by invoking certain scaling and symmetry properties. In addition, the stress state exhibits periodicity along logarithmic spirals which emanate from the void. The results predict that the mean value of in-plane pressure required to activate plastic deformation around a void in a single crystal can be higher than that necessary for a void in an isotropic material and is sensitive to the orientation of the slip systems relative to the void.  相似文献   

3.
Experimental studies on indentation into face-centered cubic (FCC) single crystals such as copper and aluminum were performed to reveal the spatially resolved variation in crystal lattice rotation induced due to wedge indentation. The crystal lattice curvature tensors of the indented crystals were calculated from the in-plane lattice rotation results as measured by electron backscatter diffraction (EBSD). Nye's dislocation density tensors for plane strain deformation of both crystals were determined from the lattice curvature tensors. The least L2-norm solutions to the geometrically necessary dislocation densities for the case in which three effective in-plane slip systems were activated in the single crystals associated with the indentation were determined. Results show the formation of lattice rotation discontinuities along with a very high density of geometrically necessary dislocations.  相似文献   

4.
Asymptotic stress and deformation fields under the contact point singularities of a nearly-flat wedge indenter and of a flat punch are derived for elastic ideally-plastic single crystals with three effective in-plane slip systems that admit a plane strain deformation state. Face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal-close packed (HCP) crystals are considered. The asymptotic fields for the flat punch are analogous to those at the tip of a stationary crack, so a potential solution is that the deformation field consists entirely of angular constant stress plastic sectors separated by rays of plastic deformation across which stresses change discontinuously. The asymptotic fields for a nearly-flat wedge indenter are analogous to those of a quasistatically growing crack tip fields in that stress discontinuities can not exist across sector boundaries. Hence, the asymptotic fields under the contact point singularities of a nearly-flat wedge indenter are significantly different than those under a flat punch. A family of solutions is derived that consists entirely of elastically deforming angular sectors separated by rays of plastic deformation across which the stress state is continuous. Such a solution can be found for FCC and BCC crystals, but it is shown that the asymptotic fields for HCP crystals must include at least one angular constant stress plastic sector. The structure of such fields is important because they play a significant role in the establishment of the overall fields under a wedge indenter in a single crystal. Numerical simulations—discussed in detail in a companion paper—of the stress and deformation fields under the contact point singularity of a wedge indenter for a FCC crystal possess the salient features of the analytical solution.  相似文献   

5.
6.
高熵合金,以其独特的合金设计和优异的综合性能,成为当下材料研究的热点。本文利用高真空电弧熔炼法成功制备出了CoCrFeNiAlx(x=0, 0.6, 1)系高熵合金,并通过分离式霍普金森压杆对其进行一系列不同应变速率下的动态压缩试验。通过X射线、扫描电镜和透射电镜分析,深入探索了该合金系的晶体结构、微观组织和变形特征。最后,利用修正后的Johnson-Cook (J-C)本构模型,获得了该体系高熵合金的动态本构关系。  相似文献   

7.
Results from experiments conducted on copper FCC single crystals are reported. Two symmetric crystallographic orientations and four nonsymmetric crystallographic orientations were tested. The slip line fields that form near a pre-existing notch in these specimens were observed. The changes in these patterns as the orientation of the notch in the crystal is rotated in an {101} plane are discussed. Sectors of similar slip line patterns are identified and the type of boundaries between these sectors are discussed. A type of sector boundary called mixed kink is identified. Specimen orientations that differ by 90° are found to have different slip line patterns, contrary to the predictions of perfectly plastic slip line theory. The locations of the first slip lines to form are compared to the predictions obtained using anisotropic linear elastic stress field solutions and the initial plane-strain yield surfaces. It is found that comparison of these surface slip line fields to plane strain crack tip solutions in the annular region between 350 and is justified. The differences in anisotropic elastic solutions for orientations that are 90° apart explain the lack of agreement with perfectly plastic slip line theory.  相似文献   

8.
Materials get damaged under shear deformations. Edge cracking is one of the most serious damage to the metal rolling industry, which is caused by the shear damage process and the evolution of anisotropy. To investigate the physics of the edge cracking process, simulations of a shear deformation for an orthotropic plastic material are performed. To perform the simulation, this paper proposes an elasto-aniso-plastic constitutive model that takes into account the evolution of the orthotropic axes by using a bases rotation formula, which is based upon the slip process in the plastic deformation. It is found through the shear simulation that the void can grow in shear deformations due to the evolution of anisotropy and that stress triaxiality in shear deformations of (induced) anisotropic metals can develop as high as in the uniaxial tension deformation of isotropic materials, which increases void volume. This echoes the same physics found through a crystal plasticity based damage model that porosity evolves due to the grain-to-grain interaction. The evolution of stress components, stress triaxiality and the direction of the orthotropic axes in shear deformations are discussed.  相似文献   

9.
Texturing of polycrystals under slip-dominated plastic deformation is driven by reorientation velocity fields that arise from the lattice spin that accompanies restricted slip. Here, the dynamics of reorientation velocity fields are analyzed to isolate mechanisms by which textures develop and dissipate. Two tools are introduced to enable this analysis: linear stability analysis to assess behavior of equilibrium orientations, and a parametrization of lattice spins to enable analysis of fields without equilibria. This toolkit is applied to face-centered cubic (FCC) polycrystals and sheds new insight into texture development under three representative deformation modes: plane strain compression, pure shear and simple shear.  相似文献   

10.
The increasing application of plane-strain testing at the (sub-) micron length scale of materials that comprise elastically anisotropic cubic crystals has motivated the development of an anisotropic two-dimensional discrete dislocation plasticity (2D DDP) method. The method relies on the observation that plane-strain plastic deformation of cubic crystals is possible in specific orientations when described in terms of edge dislocations on three effective slip systems. The displacement and stress fields of such dislocations in an unbounded anisotropic crystal are recapitulated, and we propose modified constitutive rules for the discrete dislocation dynamics of anisotropic single crystals. Subsequently, to handle polycrystalline problems, we follow an idea of O’Day and Curtin (J. Appl. Mech. 71 (2004) 805–815) and treat each grain as a plastic domain, and adopt superposition to determine the overall response. This method allows for a computationally efficient analysis of micro-scale size effects. As an application, we study freestanding thin copper films under plane-strain tension. First, the computational framework is validated for the special case of isotropic thin films modeled by means of a standard 2D DDP method. Next, predictions of size dependent plastic behavior in anisotropic columnar-grained thin films with varying thickness/grain size are presented and compared with the isotropic results.  相似文献   

11.
12.
Following the study of Gologanu et al. (1997) which has extended the well-known approach of Gurson (1975), we propose approximate yield criteria for anisotropic plastic voided metals containing non spherical cavities. The plastic anisotropy of the matrix is described by means of Hill's quadratic criterion. The procedure to establish the closed form expression of approximate macroscopic criteria, in which void shape and plastic anisotropic effects are included, is detailed. The new criteria allow us to recover existing results in the cases of spherical and cylindrical voids in an Hill type plastic matrix. Moreover, they agree with previous criteria for non spherical voids in an isotropic plastic matrix. Finally, for validation purposes, we provide, in the general case of non spherical cavities in the anisotropic matrix, a comparison with the numerical exact two field criteria. To cite this article: V. Monchiet et al., C. R. Mecanique 334 (2006).  相似文献   

13.
A strain hardening model for the plastic deformation of rate-dependent FCC crystals is proposed based on experimental observations previously reported for single crystals. This model, which is an extension of that employed by et al. [1983], includes both the self-hardening and latent hardening of the slip systems. The differential hardening of the latent systems is assumed to arise from the interaction between glide dislocations and forests. With this hardening model and a rate-sensitive crystal plasticity theory, the deformation behavior of FCC polycrystals can be predicted from the deformation response of the constituent single crystals. As examples, the uniaxial tensile behaviour of pure aluminum and copper polycrystals is simulated using the extended model, and the results are compared with published experimental data. The effects of latent hardening on polycrystal deformation, especially on flow stress and the formation of tensile textures, are discussed.  相似文献   

14.
The plastic behavior of an annealed HASTELLOY® C-22HS™ alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.  相似文献   

15.
The effects of void size and hardening in a hexagonal close-packed single crystal containing a cylindrical void loaded by a far-field equibiaxial tensile stress under plane strain conditions are studied. The crystal has three in-plane slip systems oriented at the angle 60° with respect to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up to three times higher for smaller void sizes than for larger void sizes in the non-local material.  相似文献   

16.
The Armstrong–Frederick type kinematic hardening rule was invoked to capture the Bauschinger effect of the cyclic plastic deformation of a single crystal. The yield criterion and flow rule were built on individual slip systems. Material memory was introduced to describe strain range dependent cyclic hardening. The experimental results of copper single crystals were used to evaluate the cyclic plasticity model. It was found that the model was able to accurately describe the cyclic plastic deformation and properly reflect the dislocation substructure evolution. The well-known three distinctive regimes in the cyclic stress–strain curve of the copper single crystals oriented for single slip can be reproduced by using the model. The model can predict the enhanced hardening for crystals oriented for multislip, showing the model's ability to describe anisotropic cyclic plasticity. For a given loading history, the model was able to capture not only the saturated stress–strain response but also the detailed transient stress–strain evolution. The model was used to predict the cyclic plasticity under a high–low loading sequence. Both the stress–strain responses and the microstructural evolution can be appropriately described through the slip system activation.  相似文献   

17.
The energy barrier for the cross slip of screw dislocations in face-centered cubic (FCC) nickel as a function of multiple stress components is predicted by both continuum line tension and discrete atomistic models. Contrary to Escaig's claim that the Schmid stress component has a negligible effect on the energy barrier, we find that the line tension model, when solved numerically, predicts comparable effects from the Schmid stress and the Escaig stress on the cross slip plane. When the line tension model is compared against an atomistic model for FCC nickel, a good agreement is found for the effect of the Escaig stress on the glide plane. However, the atomistic model predicts a stronger effect than the line tension model for the two stress components on the cross slip plane. This discrepancy is larger at higher stresses and is also more severe for the Escaig stress component than for the Schmid stress component.  相似文献   

18.
The asymptotic stress and deformation fields associated with the contact point singularity of a nearly-flat wedge indenter impinging on a specially-oriented single face-centered cubic crystal are derived analytically in a companion paper. In order to investigate the extent of the asymptotic fields, the indentation process is simulated numerically using single crystal plasticity. The quasistatically translating asymptotic fields consist of four angular elastic sectors separated by plastically deforming sector boundaries, as predicted in the companion paper. The asymptotic stress distributions are in accord with the analytical predictions. In addition, simulations are performed for a wedge indenter with a 90° included angle in order to investigate the consequences of finite deformation and finite lattice rotation. Several salient features of the deformation field for the nearly-flat indenter persist in the deformation field for the 90° wedge indenter. The existence of the salient features is validated by comparison to experimental measurements of the lower bound on geometrically necessary dislocation (GND) densities.  相似文献   

19.
The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal with three in-plane slip systems. It is observed that small voids allow much larger overall stress levels than larger voids for all the stress triaxialities considered. The amount of void growth is found to be suppressed for smaller voids at low stress triaxialities. Significant differences are observed in the distribution of slips and on the shape of the deformed voids for different void sizes. Furthermore, the orientation of the crystalline lattice is found to have a pronounced effect on the results, especially for the smaller void sizes.  相似文献   

20.
The combined effects of void shape and matrix anisotropy on the macroscopic response of ductile porous solids is investigated. The Gologanu–Leblond–Devaux’s (GLD) analysis of an rigid-ideal plastic (von Mises) spheroidal volume containing a confocal spheroidal cavity loaded axisymmetrically is extended to the case when the matrix is anisotropic (obeying Hill’s [Hill, R., 1948. A theory of yielding and plastic flow of anisotropic solids. Proc. Roy. Soc. London A 193, 281–297] anisotropic yield criterion) and the representative volume element is subjected to arbitrary deformation. To derive the overall anisotropic yield criterion, a limit analysis approach is used. Conditions of homogeneous boundary strain rate are imposed on every ellipsoidal confocal with the cavity. A two-field trial velocity satisfying these boundary conditions are considered. It is shown that for cylindrical and spherical void geometries, the proposed criterion reduces to existing anisotropic Gurson-like yield criteria. Furthermore, it is shown that for the case when the matrix is considered isotropic, the new results provide a rigorous generalization to the GLD model. Finally, the accuracy of the proposed approximate yield criterion for plastic anisotropic media containing non-spherical voids is assessed through comparison with numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号